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Parity Check Matrix

Codeword

n

HT

n − K

n = 0

Parity check matrix
Let C be an [n, k ]q code.

H is a parity check matrix of C ⇐⇒ C is the null space of H

That is:
C =

{
x ∈ Fn

q | xHT = 0
}
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[7,4]-Hamming code
(m1,m2,m3,m4)︸ ︷︷ ︸
Information bits

(r1, r2, r3)︸ ︷︷ ︸
Redundant bits

m2 m1

m3

m4

The number of ones
in every circle is even

r3

r3 = m2 + m3 + m4 mod 2

r1

r1 = m1 + m2 + m4 mod 2

r2

r2 = m1 + m3 + m4 mod 2
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[7,4]-Hamming code
The redundant information can be obtained from the message by 3

parity checks:


r1 = m1 + m2 + m4
r2 = m1 + m3 + m4
r3 = m2 + m3 + m4

c = (m1,m2,m3,m4, r1, r2, r4) is a codeword ⇐⇒ HcT = 0

with H =

 1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 ∈ F3×7
2
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Binary Hamming Codes
Binary Hamming Codes

H ∈ Fr×2r−1
2 such that

H contains all nonzero binary
r -tuples exactly once as a column

Any code with H as parity-check matrix is a
binary Hamming code of redundancy r .

Binary Hamming codes correct up to 1
error.
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Parity Check Matrix

A code can have more than one parity-check matrix!

Proposition: Characterization of a parity-check matrix
Let C be an [n, k ]q code with generator matrix G

H is a parity check-matrix of C ⇐⇒ GHT = 0

Proof:
From the definition of parity check matrix: cHT = 0 , for all c ∈ C
Recall that every codeword is of the form: c = mG with m ∈ Fk

q

Thus, (mG)HT = 0 , for all m ∈ Fk
q

And we conclude that GHT = 0

6



Parity Check Matrix

A code can have more than one parity-check matrix!

Proposition: Characterization of a parity-check matrix
Let C be an [n, k ]q code with generator matrix G

H is a parity check-matrix of C ⇐⇒ GHT = 0

Proof:
From the definition of parity check matrix: cHT = 0 , for all c ∈ C
Recall that every codeword is of the form: c = mG with m ∈ Fk

q

Thus, (mG)HT = 0 , for all m ∈ Fk
q

And we conclude that GHT = 0

6



Parity Check Matrix
Proposition: How to get a parity check-matrix?

G =

1 0
. . .

0 1
A

k n − k

k

is a generator matrix for C

⇐⇒ H = −AT

1 0
. . .

0 1

k n − k

n − k

is a parity-check matrix for C

Proof:

“=⇒” We clearly have HGT = 0 = −AT + AT

Thus, C ⊆ ker(H)

Since rank(H) = n − k =⇒ dim(ker(H)) = k = dim(C)
Hence, H is a parity check matrix for C

“⇐=” The converse is proved similarly.
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Dual Code

G is a generator
matrix for C ⇐⇒ H is a generator

matrix for C⊥

The dual code
Let C be an [n, k ]q code. We define the dual code C⊥ as

C⊥ =
{

x ∈ Fn
q | x · c = 0 , ∀c ∈ C

}

For x,y ∈ Fn
q the inner product is defined by

x · y = x1y1 + · · ·+ xnyn =
∑n

i=1 xiyi
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Dual Code
Proposition:

Let C be an [n, k ]q code. Then,

the dual code C⊥ is an [n,n − k ]q code.

Proof:
From the definition of dual code, the following statements are equivalents:

x ∈ C⊥ ⇐⇒ c · x = 0 , for all c ∈ C
⇐⇒ mGxT = 0 , for all m ∈ Fk

q

⇐⇒ GxT = 0

Thus, C⊥ = ker(G)
Moreover, since rank(G) = k =⇒ dim(C⊥) = n − k
We can also deduce that G is a parity check matrix for C⊥.
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Dual Code
Proposition:

Let C be an [n, k ]q code with generator matrix G. Then,

(C⊥)⊥ = C
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Trapdoor one-way functions - Decoder

EASY
Encoder = Matrix Multiplication

Message
Lin

ea
r

Enc
od

er

= Codeword

HARD
Decoding is NP-complete

E. R. Berlekamp, R. J. McEliece and H. C. A. van Tilborg.
On the Inherent Intractability of Certain Coding Problems.
IEEE Trans. Inf. Theory. Vol. 24, pp. 384-386, 1978.

A. Barg.
Complexity Issues in Coding Theory.
Chapter 7, in Handbock of Coding Theory, 1998.

EASY(with TRAPDOOR information)
Efficient decoder for certain families of codes
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