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1-1 

DESCRIPTIONS 

 

Notations et variables 
 

1.  

Cette semaine nous allons étudier les modes de représentation des grandeurs que nous allons rencontrer dans 

notre cours. La plupart d’entre vous est déjà familiarisé avec la notion de vecteur et sa représentation 

graphique. Conduit à utiliser la notion de tenseurs, nous allons décrire les outils nécessaires pour les 

représenter et travailler avec soit sous forme indicielle, soit sous forme graphique ce qui fera l’objet de deux 

leçons pour cette semaine. Sans plus tarder commençons par cette première leçon qui va nous permettre 

d’appréhender le mode de description de nos entités. Nous commencerons par définir les variables utilisées 

pour faire une description de l’état mécanique. 

 

2.  

Les problèmes que nous auront à traiter seront relativement complexes et en conséquence, il y a de fortes 

chances que nous ne puissions obtenir une réponse mathématique satisfaisante. Afin d’aboutir dans nos 

calculs, nous serons obligés de faire des hypothèses qui auront pour objet essentiel de simplifier les modèles 

mathématiques à traiter. Ces hypothèses, nous les formulerons progressivement au cours de l’enseignement. 

Notre première hypothèse sera de dire que le domaine que nous étudions est un milieu continu en évolution 

continue au cours du temps.  

 

Un domaine sera dit continu si toutes les fonctions qui le caractérisent sont des fonctions spatiales continues, 

c’est-à-dire si elles sont infiniment dérivables dans l’espace. Ainsi par exemple, la masse volumique, la 

température, la pression au sein d’un fluide, la vitesse des points d’un solide doivent être des fonctions ne 

présentant pas de discontinuité. Contrairement à ce que l’on pourrait croire, il n’est pas toujours évident de 

respecter cette condition de continuité.  

 

On peut avoir une discontinuité évidente lorsque l’on considère un domaine constitué d’eau et d’huile. 

Manifestement, au niveau de la surface de séparation des deux liquides, la masse volumique présente une 

discontinuité. Ceci étant, on pourra utiliser la mécanique des milieux continus pour traiter un problème de 

mélange eau huile. Il suffit de traiter séparément l’eau, considérée comme continue, et l’huile, fluide aussi 

continu, puis de rassembler les morceaux et d’écrire correctement les équations qui régissent l’interface entre 

les deux liquides. C’est bien entendu plus simple à faire lorsque les deux liquides sont miscibles et qu’ils 

forment ensemble un milieu continu. 

 

Mais, bien que le vin soit miscible dans l’eau, le mélange obtenu s’il donne une impression de continuité, ne 

l’est plus dès lors que l’on regarde à l’échelle de l’atome. Bien entendu, à cette échelle, aucun domaine n’est 

continu. Mais à une échelle plus humaine, on a une impression de continuité. En admettant que le mélange 

eau vin est continu, on fait donc une hypothèse simplificatrice qui nous permettra de travailler avec des 

fonctions dérivables, et donc qui facilitera la résolution de notre problème. Plus l’hypothèse sera grossière, et 

plus il faut s’attendre à des écarts entre nos résultats de calcul et la réalité.  

 

En considérant que le béton armé est continu, on peut s’attendre à des résultats un peu faussés. Mais ils 

seront proportionnellement beaucoup moins faux pour le calcul des piliers du viaduc de Millau, que pour le 
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calcul d’un plancher d’un appartement. On conçoit assez facilement que sur de grandes structures, le béton 

armé est plus continu que sur des petites.  

 

3.  

Toutefois, la continuité spatiale n’est pas suffisante. Il faut aussi avoir une continuité temporelle. Les 

fonctions caractéristiques de notre domaine doivent être aussi infiniment dérivables vis-à-vis de la variable 

temps.  

 

Ainsi par exemple, la masse volumique d’un corps que l’on réchauffe sera une fonction continue au cours du 

temps. A nouveau cette continuité dans le temps n’est pas toujours acquise.  

 

Les phénomènes de cavitation sont un exemple de discontinuité. Lorsqu’au sein de l’eau liquide on passe en 

un point en dessous de la pression de vapeur saturante, une bulle de vapeur se forme instantanément. Bien 

entendu la masse volumique va alors brutalement varier.  

 

De même la mécanique de la rupture qui a pour objet l’étude de la propagation de fissures dans un domaine 

fourmille d’exemple de fonctions discontinues, comme par exemple le déplacement d’un point. Mais à 

nouveau, par des artifices, nous arriverons à traiter la mécanique de la rupture en prenant pour base la 

mécanique des milieux continus.  

Rupture en mode IIIRupture en mode II
Rupture en mode I

 
 

4.  

Avant de définir les variables que l’on peut utiliser pour faire une étude, il convient de préciser comment 

seront repérées ces variables. Et pour cela nous allons définir les notions de référentiels et de repères. 

 

Le référentiel est attaché à l’observateur. Il représente l’ensemble des points animés d’un mouvement de 

corps rigide par rapport à l’observateur. Les fonctions étudiées seront définies par rapport à ce référentiel. 

Pour des fonctions scalaires, telles que la température, ou la masse volumique, le référentiel est suffisant 

pour les caractériser. Quand on parle de température en un point d’un corps, on désigne la valeur d’une 

fonction scalaire dont on mesure l’écart par rapport à un référentiel. Par contre, pour des fonctions plus 

complexes comme des fonctions vectorielles telles que la vitesse d’un point, il est d’usage courant de les 

symboliser par leurs composantes sur des repères. 

 

Pour des besoins de simplification de visualisation, mais pas nécessairement d’écriture, nous associerons 

donc des repères aux référentiels utilisés. Ce repère, caractérisé par le choix d’un point dit origine et d’une 

base, nous permettra de décrire des fonctions scalaires qui ne seront pas moins que les composantes de la 

fonction vectorielle dans le repère. Bien évidemment, il est possible d’associer plusieurs repères à un 

référentiel. Ainsi, tout en gardant le même point origine, on pourra parler de repère cartésien ou de repère 

curviligne comme le repère cylindrique. Ce qu’il faut bien comprendre, c’est que n’est pas en changeant de 

repère, donc de composantes étudiées, que l’on changera fondamentalement la fonction complexe étudiée. 

On parle alors de fonction tensorielle.  
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Dans l’exemple de l’écrasement d’un lopin entre les deux plateaux d’une presse, on peut définir deux 

référentiels différents. L’un est associé au 

plateau supérieur, l’autre au plateau 

inférieur. Il est indispensable que les deux 

observateurs dépendants de ces deux 

référentiels traduisent, dans leur référentiel, 

et éventuellement si nécessaire avec leur 

repère, le même phénomène physique et 

qu’ils puissent l’un et l’autre échanger leurs 

informations sans problème. C’est la 

propriété d’objectivité du phénomène. 

L’état final du lopin doit objectivement être 

le même pour l’observateur lié au plateau 

supérieur que pour l’observateur lié au 

plateau inférieur.   

 

 

5.  

Le choix d’un référentiel, et éventuellement d’un repère, 

étant fait, on peut maintenant envisager de décrire 

l’évolution de nos variables d’étude. En ce qui nous 

concerne, nous utiliserons l’école lagrangienne pour le 

choix des variables d’études. Mais avant, donnons 

quelques informations sur la notation indicielle que 

nous allons utiliser.  

 

 

Considérons donc un repère associé à un point origine 

noté O et une base. Les vecteurs de la base seront notés 

E1, E2 et E3 avec des indices et non pas X, Y et Z 

comme cela est souvent utilisé. 

 

Le positionnement d’un point M quelconque de l’espace est donné par le vecteur OM défini dans notre 

référentiel. Pour avoir une représentation de ce vecteur, on utilisera les composantes scalaires X1, X2 et X3 

obtenues par projection du vecteur position sur les vecteurs de base.  

 

On pourra donc écrire 332211 ExExExOM  .  

 

Cette notation étant un peu longue à écrire, en général, on préfère une notation plus abrégée avec le signe de 

sommation : 



3

1i

ii ExOM . L’indice i prend alors trois valeurs ce qui nous donne les trois termes de notre 

vecteur.  

 

Mais comme nous travaillons presque systématiquement dans un espace vectoriel de dimension 3, une 

simplification nouvelle dans l’écriture peut être apportée en enlevant le signe de sommation : ii ExOM  . 

L’expression devient alors très concentrée. Cette écriture ne traduit plus que le strict nécessaire. On obtient 

ainsi la convention de notation dite d’Einstein. 

 

O 

M 

x 

1 

2 

3 

E 

E 

E 
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6.  

La convention d’Einstein utilise largement la notation indicielle. La règle est relativement simple : si dans un 

monôme un indice est doublé, alors il y a sommation automatique pour cet indice sur toutes les valeurs que 

peut prendre cet indice. Dans nos applications, comme nous resterons majoritairement dans un espace 

vectoriel à trois dimensions, cela implique que l’indice doublé peut prendre les valeurs 1, 2 et 3. Un tel 

indice est dit indice muet. Il peut être remplacé par n’importe quelle autre lettre, cela ne change rien au 

résultat. Un indice qui n’est pas répété dans le monôme est dit indice réel ou encore par opposition indice 

parlant. Un indice réel doit se trouver à 

l’identique de part et d’autre d’une 

égalité. Il est nécessairement unique. 

Dans la convention d’Einstein, on ne 

peut trouver que des indices doublés, 

donc muets, ou des indices uniques, 

donc réels. On ne peut pas trouver par 

exemple des indices triplés ou 

quadruplés. Dans les exemples donnés, 

on trouve en deuxième ligne le produit 

scalaire de deux vecteurs. La dernière 

expression représente l’une des formes 

simples de la loi de Hooke. Les 

connaisseurs apprécieront.  

 

 

7.  

Nous allons traiter quelques petits exemples afin de nous familiariser un peu avec cette notation qui sera 

régulièrement employée dans notre cours.  

 

Reprenons tout d’abord la formule précédemment donnée pour le produit scalaire de deux vecteurs 

quelconques. On voit que le résultat dépend du produit scalaire des vecteurs qui constituent notre base. Dans 

le cas général, cette base sera orthonormée. Le produit scalaire de deux vecteurs unitaires vaut 0 si les deux 

vecteurs sont orthogonaux et 1 si les deux vecteurs sont confondus.  

 

On utilisera alors le symbole de Kronecker pour traduire ce 

résultat. Dans ce symbole, si les deux indices qui le composent 

sont différents, il vaut 0 et si les deux indices sont identiques, il 

vaut 1.  

 

Dès lors, dans la double sommation qui traduit le produit scalaire, 

il n’est pas utile de garder les termes pour lesquels les deux 

indices sont différents.  

 

En ne gardant que les termes ayant des indices identiques pour le 

symbole de Kronecker, ce dernier vaut 1. Et le résultat final est 

dès lors très simple.  

 

 

8.  

On peut aussi s’intéresser à l’expression indicielle de certains opérateurs couramment employés en physique.  
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Pour cela considérons tout d’abord une fonction continue scalaire s(M) = s(xi)  définie en tout point de 

l’espace. On admet que la valeur de cette fonction dépend de la position du point, position donnée par les 

variables xi. On parlera d’un champ scalaire. 

 

On peut alors envisager de regarder, par l’intermédiaire de l’opérateur gradient, quelles sont les variations 

spatiales de notre fonction. On obtient un vecteur. Dans un repère cartésien, les composantes de ce vecteur 

sont données par les dérivées partielles de la fonction s(xi) vis-à-vis respectivement des variables de 

position.  

 

On peut aussi considérer une fonction continue vectorielle V définie elle aussi en tout point de l’espace. 

Cette fois, ce sont les composantes dans une base cartésienne qui seront dépendantes de la position du point. 

On parlera d’un champ vectoriel.  

  

On peut donner l’expression de la 

divergence d’un vecteur. On obtient alors 

une fonction scalaire dont la valeur est la 

somme des dérivées partielles des 

composantes vis-à-vis respectivement des 

variables de position. A partir de ces 

résultats, on peut facilement en obtenir 

d’autres.  

 

Par exemple, si l’on veut exprimer la 

divergence d’une fonction vectorielle 

multipliée par une fonction scalaire, il 

nous suffit de faire le calcul avec la 

notation indicielle pour obtenir le résultat.  

 

9.  

Afin d’étudier l’évolution d’un domaine, il faut tout d’abord se donner un référentiel d’étude. Pour des 

questions de facilité de représentation, on associera un repère à ce référentiel. On pourra alors, pour un 

instant choisi arbitrairement comme initial, déterminer l’ensemble des vecteurs positions des particules 

matérielles constituant le domaine. On défini ainsi la configuration de référence. Pour décrire le mouvement 

du domaine par rapport à ce référentiel, il convient de se donner la loi d’évolution au cours du temps des 

vecteurs positions.  

 

On obtient alors un champ vectoriel 

fonction du temps. Cela nous donnera 

la configuration actuelle. Dans un 

premier temps, nous adopterons par 

convention des lettres majuscules pour 

la configuration de référence et des 

lettres minuscules pour la configuration 

actuelle.  

 

On constate qu’il faut être capable de 

donner les lois d’évolution des 

paramètres de position actuelle en 

fonction des paramètres de position 

initiale et du temps pour connaître 
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l’évolution du domaine. Les paramètres de position initiale et le temps constituent les variables de Lagrange. 

 

10.  
Le vecteur vitesse d’un point est obtenu par dérivation par rapport au temps du vecteur position. Si la base 

utilisée pour la représentation est une base cartésienne, 

c'est-à-dire avec des vecteurs indépendants de l’espace et 

du temps, les composantes du vecteur vitesse dans cette 

base seront obtenues simplement par dérivation par rapport 

au temps des composantes du vecteur position. Comme 

dans les variables de Lagrange, la position initiale du point 

est indépendante du temps, on peut utiliser indifféremment 

une dérivée droite ou une dérivée partielle pour calculer les 

composantes du vecteur vitesse.  

 

Pour le vecteur accélération, les calculs sont tout aussi simples à 

partir de l’instant où l’on sait qu’il suffit de dériver par rapport au 

temps le vecteur vitesse. On peut aussi dériver deux fois le vecteur 

position.  

 

 

 

11.  
Mais on peut aussi utiliser le vecteur 

déplacement pour exprimer les quantités 

précédentes. Le déplacement d’un point 

représente la différence entre le vecteur 

position dans la configuration actuelle et le 

vecteur position dans la configuration de 

référence.  

 

Sachant que le vecteur position dans la 

configuration de référence est indépendant 

du temps t, on peut alors facilement 

démontrer que le vecteur vitesse est obtenu 

par simple dérivation du vecteur 

déplacement. Pour le vecteur accélération il 

faudra dériver deux fois.  

 

12.  
En conclusion de cette leçon, nous retiendrons qu’il est utile de définir notre référentiel pour pouvoir 

communiquer tous nos résultats. Nous avons aussi vu que la notation indicielle peut permettre de simplifier 

les démonstrations. Enfin nous sommes entrés en contact avec la description lagrangienne. 
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1-2 

DESCRIPTIONS 

 

Représentations graphiques 
 

 

1.  

Ainsi que nous le constaterons ultérieurement, nous ferons beaucoup usage d’entités mathématiques 

dénommées tenseurs symétriques du second ordre. Les différentes composantes de ces tenseurs dans une 

base tridimensionnelle se présenteront sous forme d’une matrice carrée d’ordre 3 symétrique. Cette notion 

étant nouvelle pour beaucoup d’entre vous, il est nécessaire d’en donner des représentations graphiques pour 

aider à sa compréhension.  

 

2.  

Concrètement, c’est ce que nous avons 

fait lorsque nous avons associé un 

vecteur avec origine, intensité, direction 

et sens à une forme rectiligne terminée 

par une flèche.  

  

Le vecteur étant en fait un tenseur du 

premier ordre, nous avons établi une 

bijection avec un élément graphique.  

 

Cela nous a permis d’assimiler plus 

facilement la notion d’addition de ces 

tenseurs et de comprendre pourquoi le 

module d’un vecteur somme n’est pas la 

somme des modules des vecteurs 

constituants cette somme.  

 

3.  

Un tenseur du second ordre peut être donné par son représentant dans la base des 

vecteurs propres, ce représentant étant alors une matrice diagonale. Il est à noter 

que la base des vecteurs propres représente ce que l’on appellera les directions 

principales. 

 

Par l’intermédiaire de cette application tensorielle, à chaque vecteur unitaire de l’espace ii Nnn


, on peut 

associer un vecteur image nnA


T)(  dont  il est possible de calculer aisément les composantes dans la base 

des vecteurs propres.   ii NAnA 


  et  














33

22

11

nTA

nTA

nTA

III

II

I

 

 

 iIII

II

I

NT

T

T



















00

00

00

T
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En prenant initialement un vecteur unitaire, on constate alors qu’il existe une relation entre les composantes 

du vecteur image 
2

2

3

2

2

2

2

2

12

3

2

2

2

1 1

IIIIII T

A

T

A

T

A
nnn  .  

 

Avec cette relation, en considérant que les composantes du 

vecteur A représentent les coordonnées d’un point de 

l’espace, on constate que tous les points possibles se 

trouvent sur un ellipsoïde appelé ellipsoïde de Lamé.  

 

Cette première représentation graphique tridimensionnelle 

permet de constater que les valeurs propres représentent 

les valeurs extrêmales de l’état tensoriel.  

 

4.  

Nous allons voir comment obtenir graphiquement la construction 

d’une ellipse définie par intersection de l’ellipsoïde avec un plan 

principal. Pour cela nous allons nous placer dans le plan formé 

par le vecteur unitaire d’étude et son vecteur image par 

l’application tensorielle.  

On désigne par N la projection du vecteur image sur le vecteur 

d’étude. La projection du vecteur image sur le plan orthogonal au 

vecteur d’étude nous donne un vecteur, appelé vecteur tangent, 

pour lequel nous pouvons associer un vecteur unitaire. A partir du 

vecteur unitaire d’étude et de son vecteur image, des relations 

permettent de calculer aisément le vecteur normal et le vecteur 

tangent. 

 

5.  

On considère un vecteur unitaire appartenant à un plan principal 

et formant un angle alpha avec une direction principale.  

 

On peut calculer et définir son image par l’application tensorielle.  

 

 

6.  

Il est possible de donner les composantes de ce vecteur image dans la base des vecteurs propres. 

  
 i

II

I

III

II

I

E

TA

TA

T

T

T

nA























































0

sin

cos

0

sin

cos

00

00

00

2

1









 

 

7.  

La construction graphique animée nous montre comment on peut construire pas à pas l’ellipse de Lamé. On 

commence par construire l’extrémité du vecteur image associé à un vecteur unitaire n appartenant à un plan 

principal. Puis, en faisant varier progressivement l’angle entre la direction principale et le vecteur unitaire 

normal, et en recommençant la construction, on constate que l’extrémité du vecteur image décrit une ellipse. 

On remarquera que pour cette représentation, les vecteurs propres gardent une direction fixe vis-à-vis de 

l’observateur. 

 

 

IIN

IN

IIIN

 nA

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8.  

Afin de conforter nos connaissances sur les représentations graphiques, nous allons utiliser un module 

interactif du projet d’enseignement MECAGORA (http://www.mmaya.fr/Static/index.html). Ce module 

utilise le logiciel VIRTOOLS. Si ce dernier n’est pas déjà opérationnel sur l’ordinateur, une installation 

automatique sera proposée lors de la première tentative d’utilisation.  

 

Le mode d’emploi de la souris est disponible à tout instant en cliquant sur le menu Information.  

 

Un écran classique se compose de 

différentes fenêtres.  

  

Une fenêtre de visualisation 

graphique contient des objets en 3 

Dimensions que l’on peut déplacer 

de façon interactive avec la souris.  

  

Une fenêtre de commande dans 

laquelle il est possible d’agir sur 

des valeurs de paramètres.  

 

Et une fenêtre de résultats 

contenant les valeurs numériques 

de certaines grandeurs calculées.  

 

 

9.  

Dans le projet Mécagora, le module ia4 

(http://mecagora.free.fr/modules/m9/html/animation_ia4.htm) permet d’avoir 

une représentation de l’ellipsoïde de Lamé en fonction des valeurs données à 

l’application tensorielle. Si cette dernière est représentée par une matrice 

diagonale, la base des vecteurs propres est confondue avec la base d’étude.  

 

 

10.  
La représentation par ellipsoïde de Lamé est tridimensionnelle et donc peu facile à utiliser. Afin de remédier 

à cet inconvénient, nous allons utiliser une représentation plane. Avec les formules de changement de base 

on peut donner les nouvelles composantes dans la base formée par le vecteur normal et le vecteur qui lui est 

orthogonal et que nous appellerons vecteur tangent :   tanaEAEAnA tnIII


 21  

 











tnE

tnE

II

I

)cos()sin(

)sin()cos(




 

 









)cos()sin(

)sin()cos(

21

21





AAa

AAa

t

n
        













sin

cos

2

1

II

I

TA

TA
 

 

Et les formules de trigonométrie permettent de passer à 

l’angle double.  
IE


IIE


n
t





http://www.mmaya.fr/Static/index.html
http://mecagora.free.fr/modules/m9/html/animation_ia4.htm
http://mecagora.free.fr/modules/m9/html/animation_ia4.htm
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11.  
Commençons par positionner un repère plan avec une origine O et la base constituée par les vecteurs 

propres. 

 

Dans ce plan on peut positionner les vecteurs n et t dont le positionnement angulaire est donné par l’angle 

alpha.  

 

Sur l’axe normal, on peut repérer les 

deux points aux distances définies par les 

deux valeurs propres TI et TII. Le milieu 

de ces deux points nous détermine le 

point C tel que   

 

On peut maintenant représenter le vecteur 

CM de module (TI – TII)/2 et formant un 

angle -2a avec l’axe normal  

 

Le vecteur image A(n) étant la somme 

vectorielle des deux vecteurs précédents, 

on constate sans problème que lorsque 

l’angle alpha varie, le point M décrit un 

cercle dans le repère tournant associé aux 

vecteurs n et t. C’est le cercle de Mohr du 

plan des vecteurs propres. 

  

 

A partir de cette construction, on constate que lorsque que l’on trace une 

droite joignant le point à valeur propre minimale TII au point courant du 

cercle M associé à notre vecteur normal n, on obtient un angle alpha avec 

cette normale. Cette droite est parallèle à la direction du vecteur propre 

maximal EI.  

 

 

Et de façon duale, la droite qui joint le point à valeur propre maximale TI 

au point courant M nous donne une direction parallèle au vecteur propre 

minimal EII. On voit que le cercle de Mohr contient de façon intrinsèque 

des indications sur les vecteurs propres de notre application tensorielle.  

 

 

12.   
Comme pour l’ellipse de Lamé, ce cercle peut être obtenu en faisant varier progressivement l’angle entre la 

direction principale et le vecteur unitaire normal. En faisant une construction pas à pas, on constate que le 

point extrémité du vecteur image décrit un cercle dans le repère associé au vecteur normal et au vecteur 

tangent. Mais, contrairement à la construction de l’ellipse de Lamé, les directions principales sont en 
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mouvement par rapport à l’observateur. En général, on représente le cercle de Mohr en plaçant l’axe normal 

n horizontal. 

 

13.   
Le plan contenant le vecteur unitaire normal et son vecteur image sera appelé le plan de Mohr.  

 

Si le vecteur unitaire normal appartient à un plan principal, l’extrémité du vecteur image est situé sur un 

cercle dont le centre est sur l’axe normal et dont les points intersections avec l’axe normal ont des abscisses 

égales aux valeurs propres associées aux vecteurs propres du plan principal.  

 

Comme nous avons en général trois valeurs propres distinctes, on obtient un ensemble de trois cercles appelé 

tri cercle de Mohr.  

 

14.   
On démontre que si le vecteur normal n’appartient à aucun des plans principaux, l’extrémité du vecteur 

image est à l’intérieur du tricercle de Mohr. 

 

Les projections du vecteur image sur les vecteurs de base du plan de Mohr nous donnent le vecteur normal et 

le vecteur tangent.  

 

15.   
Avec cette figure, on constate que la plus grande valeur du 

vecteur normal est égale à la valeur propre la plus grande, la 

plus petite valeur est celle de la valeur propre la plus faible.  

  

Enfin la plus grande valeur du vecteur tangent est égale au 

rayon du plus grand des cercles, soit la demi différence entre la 

plus grande valeur propre et la plus petite valeur propre.  

 

16.  
Dans cette leçon, nous avons vu comment, en partant d’une représentation d’un tenseur de second ordre sous 

forme d’une matrice diagonale donnant les valeurs propres dans les directions principales, nous pouvions 

associer à notre application tensorielle deux représentations graphiques. L’une conduit à une forme 

tridimensionnelle appelée ellipsoïde de Lamé, l’autre conduit à une forme bidimensionnelle dénommée tri-

cercles de Mohr. Dans la leçon suivante, nous allons pouvoir utiliser les cercles de Mohr pour le tenseur 

quadratique associé à une section plane.  
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1-3 

DESCRIPTIONS 

 

Applications 
 

 

1.  

Avec cette présentation, nous allons, sous forme d’exercice mettre en application la notion de repère et voir 

comment la représentation de Mohr permet dans certains cas d’obtenir graphiquement les valeurs propres et 

les vecteurs propres d’un tenseur du second ordre. Pour cela nous allons utiliser les propriétés 

caractéristiques d’une section plane.   

 

2.  

Parmi les solides déformables que nous pourrons 

étudier ultérieurement, les poutres vont jouer un rôle 

particulier. Géométriquement elles se présenteront 

sous forme d’un domaine tridimensionnel mais 

l’une des dimensions est plus grande que les deux 

autres. 

 

Concrètement, pour générer ce domaine, il faut se 

donner une forme géométrique dans un plan. A cette 

forme nous associerons son isobarycentre G.  

  

Puis en promenant l’ensemble le long d’une courbe 

dans l’espace, on décrira notre poutre délimitée par 

une section origine et une section extrémité.  

 

3.  

En se plaçant dans le plan de définition de notre section 

déterminée par son contour, il convient de positionner 

l’isobarycentre.  Ce dernier est défini par une intégrale 

portant sur toute la section avec l’élément de surface pour 

variable et le vecteur position pour intégrante. Cette 

définition permet d’obtenir notre isobarycentre de façon 

intrinsèque à la surface c’est-à-dire dans son référentiel, 

mais dans la pratique il sera nécessaire d’utiliser un repère 

avec une origine 0 et des axes. En utilisant la relation de 

Chasle, on peut facilement déterminer le vecteur position 

de l’isobarycentre dans ce repère. Le vecteur position d’un 

point M courant de notre section plane est connu dans ce 

repère par ses composantes. A partir de ces vecteurs, on 

peut écrire les coordonnées scalaires de positionnement de 

l’isobarycentre dans le repère.  

4.  
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Les grandeurs intégrales que nous venons d’obtenir représentent les deux moments statiques de notre section 

plane dans le repère d’origine O. Ces moments 

statiques sont associés aux vecteurs de base, mais 

aussi au point origine du repère. 

 

En changeant simplement d’origine, on obtient de 

nouvelles valeurs. Il est à noter que si l’on fait le 

calcul en prenant l’isobarycentre comme origine, le 

moment statique est nul.  

  

Le plus remarquable est que ce résultat est valable 

quel que soit l’orientation de l’axe passant par 

l’isobarycentre. On peut définir l’isobarycentre en 

disant que c’est le point du plan pour lequel tous les 

moments statiques sont nuls.  

 

5.  

Dans l’étude de la déformation des poutres, il sera 

aussi nécessaire d’utiliser les notions de moments 

quadratiques qui sont des intégrales du même type, 

l’intégrante étant des distances élevées au carré.  


S

dsxeOI
2

21);(   

Et l’on utilisera aussi les produits quadratiques, 

intégrales obtenues avec le produit des coordonnées 

comme intégrante. Il est à noter que pour une section 

plane symétrique par rapport à l’un des axes, le produit 

quadratique est nul. 
S

jiji dsxxeeOP ),;(  

 

6.  

A partir des résultats précédents, il est possible d’envisager un changement de repère obtenu par simple 

changement d’origine. Connaissant le moment quadratique pour un axe passant par une origine O 

quelconque, on veut calculer le moment quadratique pour la même orientation d’axe mais passant par 

l’isobarycentre.  

 

Pour cela, il suffit d’utiliser les formules de changement de repère par translation.  

  

Il suffit alors de développer le calcul d’intégrale. Dans le dernier membre de l’égalité, la première intégrale 

nous donne l’aire de notre section plane, la seconde représentant un moment statique pour un axe passant par 

l’isobarycentre est nulle, et enfin la troisième représente le moment quadratique pour l’axe passant par 

l’isobarycentre.  

 

Au final, on obtient une formule traduisant le théorème de changement d’origine dit de Huygens. Attention, 

cette formule n’est valable que si le second point est l’isobarycentre. Elle ne peut pas être utilisée 

directement entre deux points quelconques du plan. Avec cette relation de Huygens, on constate que, pour 

une direction donnée, le moment quadratique sera minimal pour l’axe passant par l’isobarycentre.  

 

7.  
);();( 1

2

21 eGISxeOI G 

iiGi Xxx 
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Après un changement de repère par translation on peut s’interroger sur les relations existantes dans le cas 

d’un changement de repère par rotation. Nous allons faire l’application en prenant l’isobarycentre pour 

origine des deux repères. 

  

On écrit le vecteur position dans les deux repères. Pour avoir les relations de changement de coordonnée, il 

faut appliquer les formules de changement sur les vecteurs de base.  

En nous pouvons ainsi exprimer les nouvelles coordonnées en fonction des anciennes.  

  

 

 

 

Relations très utiles pour exprimer les moments quadratiques et le produit quadratique du nouveau repère en 

fonction des anciennes coordonnées. Ce qui nous permet de relier les moments quadratiques et produits 

quadratiques entre eux.  

 

 

 

 

 

8.  

Les relations précédentes peuvent être avantageusement résumées avec une formulation matricielle avec des 

notations abrégées évidentes.  

 

 

 

 

On voit ainsi apparaître une application tensorielle du second ordre représentée par le tenseur quadratique qui 

admet différents représentants selon la base d’étude.  

  

 

 

 

Par changement de base, on peut obtenir un représentant matriciel diagonal.  

 

 

 

 

Pour connaitre les vecteurs propres et directions principales il suffit d’annuler l’expression donnant le 

produit quadratique en fonction de l’angle de changement de base.  

 

 

 

 

  

Après être passé par l’angle double, on peut obtenir le positionnement des vecteurs propres.  

 

 

 

 

9.  
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Il est possible de retrouver ce résultat à partir de la représentation 

graphique de Mohr. Pour cela on va considérer le représentant matriciel 

du tenseur dans la base initiale.  

 

Avec cette expression tensorielle, on peut calculer les vecteurs images 

de nos deux vecteurs de bases.  

  

Pour faire le calcul, il faut que le représentant matriciel du tenseur et le 

représentant matriciel du vecteur soient exprimés dans la même base.  

 

Pour représenter graphiquement ces vecteurs nous allons nous placer 

dans le plan de Mohr déterminé par le vecteur normal et le vecteur tangent. 

  

 

Dans le cas du vecteur image du premier vecteur de base, le vecteur normal 

est justement ce vecteur de base. Tout naturellement nous prendrons le 

deuxième vecteur de base pour le vecteur tangent ce qui nous permet de 

dessiner le vecteur image dans le plan de Mohr.  

  

 

Pour le vecteur image du deuxième vecteur de base, il faut faire 

une rotation de 90° de la base précédente pour que le vecteur 

normal du plan de Mohr soit porté par le deuxième vecteur de la 

base. De fait le premier vecteur de la base est opposé au vecteur 

tangent.  

 

 

 

Les extrémités des deux vecteurs images nous donnent deux points 

qui se trouvent sur le cercle de Mohr. Pour obtenir le centre de ce 

dernier, il faut trouver l’intersection de la médiatrice des deux points 

avec l’axe horizontal du repère car le centre est situé à égale distance 

des deux points et sur l’axe normal. Mais en fait on constate que ce 

centre est aussi le milieu des points dans le cas de notre exemple.  

 

On peut tracer le cercle de Mohr qui par intersection avec l’axe 

normal nous donne les deux valeurs propres. 

 

10.  
Pour obtenir ces dernières, il faut, en utilisant le théorème de 

Pythagore, calculer le rayon du cercle.  

  

Les valeurs propres sont égales à la distance positionnant le centre 

du cercle de Mohr à laquelle on ajoute ou on retranche la valeur du 

rayon.  

  

 

Enfin nous avons vu que si l’on traçait la droite passant par le point de valeur propre minimale et le point 

courant du cercle associé par exemple au premier vecteur de base, on obtenait dans notre base une direction 

portée par le vecteur propre maximal.  
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Et de façon duale, la droite qui passe par le point de valeur propre 

maximale et le point courant nous donne une direction portée par le 

vecteur propre minimal. 

  

 

 

Avec cette dernière 

figure reprenant les résultats précédents, on peut obtenir 

facilement le double de l’angle formé entre les vecteurs de base 

et les vecteurs propres.  

 

 

 

 

 

 

 

 

11.  
En relation de ce qui vient d’être fait, 

l’auditeur est invité à positionner le 

barycentre et à définir les valeurs 

propres et vecteurs propres pour la 

section plane représentée.  

 

 

 

 

 

 

12.   
En conclusion, avec cette application sur les grandeurs caractéristique d’une surface plane, nous avons pu 

constater l’intérêt de définir plusieurs repères pour décrire un même objet. Nous avons travaillé avec la 

notion de tenseur du second ordre dans un espace vectoriel à deux dimensions. Enfin la construction 

graphique à partir du cercle de Mohr nous a été utile pour obtenir aussi bien les valeurs propres que les 

vecteurs propres de notre application tensorielle.  

 

 


