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1-1
DESCRIPTIONS

Notations et variables

1.

Cette semaine nous allons étudier les modes de représentation des grandeurs que nous allons rencontrer dans
notre cours. La plupart d’entre vous est déja familiarisé avec la notion de vecteur et sa représentation
graphique. Conduit a utiliser la notion de tenseurs, nous allons décrire les outils nécessaires pour les
représenter et travailler avec soit sous forme indicielle, soit sous forme graphique ce qui fera I’objet de deux
lecons pour cette semaine. Sans plus tarder commencons par cette premiére lecon qui va nous permettre
d’appréhender le mode de description de nos entités. Nous commencerons par définir les variables utilisées
pour faire une description de 1’état mécanique.

2.
Les probléemes que nous auront a traiter seront relativement complexes et en conséquence, il y a de fortes
chances que nous ne puissions obtenir une réponse mathématique satisfaisante. Afin d’aboutir dans nos
calculs, nous serons obligés de faire des hypothéses qui auront pour objet essentiel de simplifier les modeles
mathématiques a traiter. Ces hypothéses, nous les formulerons progressivement au cours de I’enseignement.
Notre premiere hypothése sera de dire que le domaine que nous étudions est un milieu continu en évolution
continue au cours du temps.

Un domaine sera dit continu si toutes les fonctions qui le caractérisent sont des fonctions spatiales continues,
c’est-a-dire si elles sont infiniment dérivables dans I’espace. Ainsi par exemple, la masse volumique, la
température, la pression au sein d’un fluide, la vitesse des points d’un solide doivent étre des fonctions ne
présentant pas de discontinuité. Contrairement a ce que 1’on pourrait croire, il n’est pas toujours évident de
respecter cette condition de continuité.

On peut avoir une discontinuité évidente lorsque 1’on considére un domaine constitué d’eau et d’huile.
Manifestement, au niveau de la surface de séparation des deux liquides, la masse volumique présente une
discontinuité. Ceci étant, on pourra utiliser la mécanique des milieux continus pour traiter un probléme de
mélange eau huile. Il suffit de traiter séparément 1’eau, considérée comme continue, et 1’huile, fluide aussi
continu, puis de rassembler les morceaux et d’écrire correctement les équations qui régissent 1’interface entre
les deux liquides. C’est bien entendu plus simple a faire lorsque les deux liquides sont miscibles et qu’ils
forment ensemble un milieu continu.

Mais, bien que le vin soit miscible dans 1’eau, le mélange obtenu s’il donne une impression de continuité, ne
I’est plus des lors que 1’on regarde a I’échelle de 1’atome. Bien entendu, a cette échelle, aucun domaine n’est
continu. Mais a une échelle plus humaine, on a une impression de continuité. En admettant que le mélange
eau vin est continu, on fait donc une hypothese simplificatrice qui nous permettra de travailler avec des
fonctions dérivables, et donc qui facilitera la résolution de notre probleéme. Plus I’hypothése sera grossicre, et
plus il faut s’attendre a des écarts entre nos resultats de calcul et la réalité.

En considérant que le béton armé est continu, on peut s’attendre a des résultats un peu faussés. Mais ils
seront proportionnellement beaucoup moins faux pour le calcul des piliers du viaduc de Millau, que pour le
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calcul d’un plancher d’un appartement. On congoit assez facilement que sur de grandes structures, le béton
arme est plus continu que sur des petites.

3.
Toutefois, la continuité spatiale n’est pas suffisante. Il faut aussi avoir une continuité temporelle. Les
fonctions caractéristiques de notre domaine doivent étre aussi infiniment dérivables vis-a-vis de la variable
temps.

Ainsi par exemple, la masse volumique d’un corps que 1’on réchauffe sera une fonction continue au cours du
temps. A nouveau cette continuité dans le temps n’est pas toujours acquise.

Les phénomenes de cavitation sont un exemple de discontinuité. Lorsqu’au sein de I’eau liquide on passe en
un point en dessous de la pression de vapeur saturante, une bulle de vapeur se forme instantanément. Bien
entendu la masse volumique va alors brutalement varier.

De méme la mécanique de la rupture qui a pour objet 1’étude de la propagation de fissures dans un domaine
fourmille d’exemple de fonctions discontinues, comme par exemple le déplacement d’un point. Mais a
nouveau, par des artifices, nous arriverons a traiter la mécanique de la rupture en prenant pour base la
mécanique des milieux continus.

Rupture en mode 11 - Rupture en mode 111

. Rupture en mode | /H

4.

Avant de définir les variables que 1’on peut utiliser pour faire une étude, il convient de préciser comment
seront repérées ces variables. Et pour cela nous allons définir les notions de référentiels et de repéres.

Le référentiel est attaché a I’observateur. Il représente 1’ensemble des points animés d’un mouvement de
corps rigide par rapport a I’observateur. Les fonctions étudiées seront définies par rapport a ce référentiel.
Pour des fonctions scalaires, telles que la température, ou la masse volumique, le référentiel est suffisant
pour les caractériser. Quand on parle de température en un point d’un corps, on désigne la valeur d’une
fonction scalaire dont on mesure 1’écart par rapport a un référentiel. Par contre, pour des fonctions plus
complexes comme des fonctions vectorielles telles que la vitesse d’un point, il est d’'usage courant de les
symboliser par leurs composantes sur des repéres.

Pour des besoins de simplification de visualisation, mais pas nécessairement d’écriture, nous associerons
donc des reperes aux référentiels utilisés. Ce repére, caractérisé par le choix d’un point dit origine et d’une
base, nous permettra de décrire des fonctions scalaires qui ne seront pas moins que les composantes de la
fonction vectorielle dans le repére. Bien évidemment, il est possible d’associer plusieurs repéres a un
réferentiel. Ainsi, tout en gardant le méme point origine, on pourra parler de repere carteésien ou de repére
curviligne comme le repére cylindrique. Ce qu’il faut bien comprendre, c’est que n’est pas en changeant de
repere, donc de composantes étudiées, que 1’on changera fondamentalement la fonction complexe étudiée.
On parle alors de fonction tensorielle.
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Dans I’exemple de I’écrasement d’un lopin entre les deux plateaux d’une presse, on peut définir deux
référentiels différents. L’un est associé au
plateau supérieur, ['autre au plateau

/\ inférieur. 1l est indispensable que les deux

\_’/ observateurs dépendants de ces deux
référentiels traduisent, dans leur référentiel,

et eventuellement si nécessaire avec leur

repére, le méme phénomene physique et
qu’ils puissent I’un et 1’autre échanger leurs
informations sans probléme. C’est la
propriété d’objectivité du phénomene.

L’¢état final du lopin doit objectivement étre

le méme pour 1’observateur 1li¢ au plateau

supérieur que pour 1’observateur lié au
plateau inférieur.

Contact pratiquement
sans frottement

*y
i

Contact avec
frottement élevé

5.

Le choix d’un référentiel, et éventuellement d’un repére,
étant fait, on peut maintenant envisager de décrire
I’évolution de nos variables d’étude. En ce qui nous
concerne, nous utiliserons 1’école lagrangienne pour le
choix des variables d’études. Mais avant, donnons
quelques informations sur la notation indicielle que
nous allons utiliser.

Considerons donc un repere associé a un point origine
noté O et une base. Les vecteurs de la base seront notés
El, E2 et E3 avec des indices et non pas X, Y et Z
comme cela est souvent utilisé. Ex

Le positionnement d’un point M quelconque de 1’espace est donné par le vecteur OM défini dans notre
référentiel. Pour avoir une représentation de ce vecteur, on utilisera les composantes scalaires X1, X2 et X3
obtenues par projection du vecteur position sur les vecteurs de base.

_ —

On pourra donc écrire OM =x, E, + X, E, + X, E;.

Cette notation étant un peu longue a écrire, en général, on préfere une notation plus abrégée avec le signe de

— 3 —_—
sommation : OM =Zxi E, . L’indice i prend alors trois valeurs ce qui nous donne les trois termes de notre
i=1
vecteur.

Mais comme nous travaillons presque systématiquement dans un espace vectoriel de dimension 3, une

simplification nouvelle dans I’écriture peut €tre apportée en enlevant le signe de sommation : OM =X, E

L’expression devient alors trés concentrée. Cette écriture ne traduit plus que le strict nécessaire. On obtient
ainsi la convention de notation dite d’Einstein.
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6.
La convention d’Einstein utilise largement la notation indicielle. La régle est relativement simple : si dans un
mondme un indice est doublé, alors il y a sommation automatique pour cet indice sur toutes les valeurs que
peut prendre cet indice. Dans nos applications, comme nous resterons majoritairement dans un espace
vectoriel a trois dimensions, cela implique que I’indice doublé peut prendre les valeurs 1, 2 et 3. Un tel
indice est dit indice muet. Il peut étre remplacé par n’importe quelle autre lettre, cela ne change rien au
résultat. Un indice qui n’est pas répété dans le mondme est dit indice réel ou encore par opposition indice
parlant. Un indice réel doit se trouver a En jaune: indice muet
I’identique de part et d’autre d’une
égalité. Il est nécessairement unique.
Dans la convention d’Einstein, on ne
peut trouver que des indices doublés,
donc muets, ou des indices uniques,
donc réels. On ne peut pas trouver par
exemple des indices triplés ou
quadruplés. Dans les exemples donnés,
on trouve en deuxiéme ligne le produit
scalaire de deux vecteurs. La derniére
expression représente 1’'une des formes
simples de la loi de Hooke. Les
connaisseurs apprécieront.

7.
Nous allons traiter quelques petits exemples afin de nous familiariser un peu avec cette notation qui sera
régulierement employée dans notre cours.

Reprenons tout d’abord la formule précédemment donnée pour le produit scalaire de deux vecteurs
quelconques. On voit que le résultat dépend du produit scalaire des vecteurs qui constituent notre base. Dans
le cas général, cette base sera orthonormée. Le produit scalaire de deux vecteurs unitaires vaut 0 si les deux
vecteurs sont orthogonaux et 1 si les deux vecteurs sont confondus.

On utilisera alors le symbole de Kronecker pour traduire ce
résultat. Dans ce symbole, si les deux indices qui le composent
sont différents, il vaut O et si les deux indices sont identiques, il
vaut 1.

Dés lors, dans la double sommation qui traduit le produit scalaire,
il n’est pas utile de garder les termes pour lesquels les deux
indices sont différents.

En ne gardant que les termes ayant des indices identiques pour le
symbole de Kronecker, ce dernier vaut 1. Et le résultat final est
dés lors trés simple.

8.
On peut aussi s’intéresser a I’expression indicielle de certains opérateurs couramment employés en physique.

ORI
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Pour cela considérons tout d’abord une fonction continue scalaire s(M) = s(x;) définie en tout point de
I’espace. On admet que la valeur de cette fonction dépend de la position du point, position donnée par les
variables xi. On parlera d’un champ scalaire.

On peut alors envisager de regarder, par ’intermédiaire de I’opérateur gradient, quelles sont les variations
spatiales de notre fonction. On obtient un vecteur. Dans un repére cartésien, les composantes de ce vecteur
sont données par les dérivées partielles de la fonction s(xi) vis-a-vis respectivement des variables de
position.

On peut aussi considérer une fonction continue vectorielle V définie elle aussi en tout point de ’espace.
Cette fois, ce sont les composantes dans une base cartésienne qui seront dépendantes de la position du point.
On parlera d’un champ vectoriel.

On peut donner I’expression de Ia
divergence d’un vecteur. On obtient alors
une fonction scalaire dont la valeur est la
somme des dérivees partielles des
composantes Vvis-a-vis respectivement des
variables de position. A partir de ces
résultats, on peut facilement en obtenir
d’autres.

Par exemple, si I’on veut exprimer la
divergence d’une fonction vectorielle
multipliée par une fonction scalaire, il
nous suffit de faire le calcul avec la
notation indicielle pour obtenir le résultat.

9.
Afin d’étudier I’évolution d’un domaine, il faut tout d’abord se donner un référentiel d’étude. Pour des
questions de facilité de représentation, on associera un repére a ce référentiel. On pourra alors, pour un
instant choisi arbitrairement comme initial, déterminer 1’ensemble des vecteurs positions des particules
matérielles constituant le domaine. On défini ainsi la configuration de référence. Pour décrire le mouvement
du domaine par rapport a ce référentiel, il convient de se donner la loi d’évolution au cours du temps des
vecteurs positions.

— Configuration de référence On obtient alors un champ vectoriel
OM,=X,E+X,E,+X,E,=X,E=X fonction du temps. Cela nous donnera

la configuration actuelle. Dans un
premier temps, nous adopterons par
Mo convention des lettres majuscules pour
F:pu

la configuration de référence et des
lettres minuscules pour la configuration

X actuelle.
. Conficuration actuelle On constate qu’il faut étre capable de
= OM,=x, E +x,E,+x, E;=x. E== donner les lois d’évolution des

paramétres de position actuelle en
fonction des paramétres de position
initiale et du temps pour connaitre
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1I’évolution du domaine. Les paramétres de position initiale et le temps constituent les variables de Lagrange.

10.
Le vecteur vitesse d’un point est obtenu par dérivation par rapport au temps du vecteur position. Si la base
utilisée pour la représentation est une base cartésienne,

c'est-a-dire avec des vecteurs indépendants de 1’espace et Vitesse
du temps, les composantes du vecteur vitesse dans cette .
base seront obtenues simplement par dérivation par rapport dOM _
au temps des composantes du vecteur position. Comme V[M,z_)—idr [ % =Pi(X,.7)
dans les variables de Lagrange, la position initiale du point
s L d D, D,
est indépendante du temps, on peut utiliser indifféremment V.= (X ——‘(Xﬁz)

une dérivée droite ou une dérivée partielle pour calculer les
composantes du vecteur vitesse.
Accélération
.= Pour le vecteur accélération, les calculs sont tout aussi simples a

1;[‘.1,{‘3 = ' partir de I’instant ou 1’on sait qu’il suffit de dériver par rapport au
’ o dt temps le vecteur vitesse. On peut aussi dériver deux fois le vecteur
51D osition.
d* o, P
ye—— (X1 (X
11.

Mais on peut aussi utiliser le vecteur

déplacement pour exprimer les quantités

précédentes. Le déplacement d’un point

représente la différence entre le vecteur />
position dans la configuration actuelle et le Mo

vecteur position dans la configuration de
référence.

W(X,.0=OM,~OM ,=%—X

o

Sachant que le vecteur position dans la
configuration de référence est indépendant
du temps t, on peut alors facilement
démontrer que le vecteur vitesse est obtenu
par simple dérivation du  vecteur
déplacement. Pour le vecteur accélération il 7
faudra dériver deux fois.

POL D=0 (X 0= (.1
dt

12.
En conclusion de cette lecon, nous retiendrons qu’il est utile de définir notre référentiel pour pouvoir
communiquer tous nos résultats. Nous avons aussi vu que la notation indicielle peut permettre de simplifier
les démonstrations. Enfin nous sommes entrés en contact avec la description lagrangienne.
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1-2
DESCRIPTIONS

Repreésentations graphiques

1.
Ainsi que nous le constaterons ultérieurement, nous ferons beaucoup usage d’entités mathématiques
dénommeées tenseurs symétriques du second ordre. Les différentes composantes de ces tenseurs dans une
base tridimensionnelle se présenteront sous forme d’une matrice carrée d’ordre 3 symétrique. Cette notion
étant nouvelle pour beaucoup d’entre vous, il est nécessaire d’en donner des représentations graphiques pour
aider a sa compréhension.

2.
Concretement, c’est ce que nous avons
fait lorsque nous avons associé un
vecteur avec origine, intensité, direction
et sens a une forme rectiligne terminee
par une fleche.

Le vecteur étant en fait un tenseur du
premier ordre, nous avons établi une
bijection avec un élement graphique.

Cela nous a permis d’assimiler plus
facilement la notion d’addition de ces
tenseurs et de comprendre pourquoi le
module d’un vecteur somme n’est pas la
somme des modules des vecteurs
constituants cette somme.

3.
Un tenseur du second ordre peut étre donné par son représentant dans la base des T 0 0
vecteurs propres, ce représentant étant alors une matrice diagonale. Il est a noter T=lo T 0
que la base des vecteurs propres représente ce que 1’on appellera les directions ! —
principales. 0 0 T, (Ni)

Par ’intermédiaire de cette application tensorielle, a chaque vecteur unitaire de I’espace N=n, N;, on peut

associer un vecteur image A(M)=Tn dont il est possible de calculer aisément les composantes dans la base

— — A=Tn
des vecteurs propres. A[)=AN, et 1A =T, n,
Ay=Ty n,
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En prenant initialement un vecteur unitaire, on constate alors qu’il existe une relation entre les composantes
2 2 2
du vecteur image n,” +n,” +n,’ =1=i2+i2+ A32 _
T° T T
1l 1

Avec cette relation, en considérant que les composantes du
vecteur A représentent les coordonnées d’un point de
I’espace, on constate que tous les points possibles se
trouvent sur un ellipsoide appelé ellipsoide de Lamé.

Cette premiére représentation graphique tridimensionnelle
permet de constater que les valeurs propres représentent
les valeurs extrémales de 1’état tensoriel.

4.
Nous allons voir comment obtenir graphiquement la construction
d’une ellipse définie par intersection de 1’ellipsoide avec un plan
principal. Pour cela nous allons nous placer dans le plan formé
par le vecteur unitaire d’étude et son vecteur image par
I’application tensorielle.
On désigne par N la projection du vecteur image sur le vecteur
d’étude. La projection du vecteur image sur le plan orthogonal au
vecteur d’étude nous donne un vecteur, appelé vecteur tangent, -
pour lequel nous pouvons associer un vecteur unitaire. A partir du N :(ﬁ‘ .A(ﬁ))ﬁ:N n  Vecteur normal
vecteur unitaire d’étude et de son vecteur image, des relations Vecteur tangent
permettent de calculer aisément le vecteur normal et le vecteur
tangent.

5.
On considere un vecteur unitaire appartenant a un plan principal
et formant un angle alpha avec une direction principale.

On peut calculer et définir son image par I’application tensorielle.

ii=cosa E,+sina E, {=-sinak,+cosak,
6. A(@)=Th
Il est possible de donner les composantes de ce vecteur image dans la base des vecteurs propres.
0 0 \cosa A =T cosa

Tl
Al 0 T, 0 |sina|<{A=T,sina
o 0o T, o o JE

7.
La construction graphique animée nous montre comment on peut construire pas a pas 1’ellipse de Lamé. On
commence par construire I’extrémité du vecteur image associé a un vecteur unitaire n appartenant a un plan
principal. Puis, en faisant varier progressivement 1’angle entre la direction principale et le vecteur unitaire
normal, et en recommencgant la construction, on constate que I’extrémité du vecteur image décrit une ellipse.
On remarquera que pour cette représentation, les vecteurs propres gardent une direction fixe vis-a-vis de
’observateur.
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8.
Afin de conforter nos connaissances sur les représentations graphiques, nous allons utiliser un module
interactif du projet d’enseignement MECAGORA (http://www.mmaya.fr/Static/index.html). Ce module
utilise le logiciel VIRTOOLS. Si ce dernier n’est pas déja opérationnel sur I’ordinateur, une installation
automatique sera proposée lors de la premiére tentative d’utilisation.

Le mode d’emploi de la souris est disponible a tout instant en cliquant sur le menu Information.

Un écran classique se compose de Q=
différentes fenétres. |- g
Une fenétre de visualisation ) Bouton droit = Mollette
graphique contient des objets en 3 B

Dimensions que I’on peut déplacer ~ X iver) e (o)
de facon interactive avec la souris.

Une fenétre de commande dans oA °
laquelle il est possible d’agir sur tathudic Jee00 ¢ g
des valeurs de paramétres. ongtude [550 T+ &
Et wune fenétre de résultats xt (25,00
contenant les valeurs numériques - o

de certaines grandeurs calculées.

9.
Dans le projet Mécagora, le module iad
(http://mecagora.free.fr/modules/m9/html/animation_ia4.htm) permet d’avoir
une représentation de 1’ellipsoide de Lamé en fonction des valeurs données a
I’application tensorielle. Si cette derniere est représentée par une matrice
diagonale, la base des vecteurs propres est confondue avec la base d’étude.

10.
La représentation par ellipsoide de Lamé est tridimensionnelle et donc peu facile a utiliser. Afin de remédier
a cet inconvénient, nous allons utiliser une représentation plane. Avec les formules de changement de base
on peut donner les nouvelles composantes dans la base formée par le vecteur normal et le vecteur qui lui est

orthogonal et que nous appellerons vecteur tangent : A(i)=A E, + A, E, =a, fi+a,

E, =c0s(«r) n —sin(a)f
E =sin(a) n+ cos(a)t

a, =A cos(a)+ A, sin(a) A =T, cosx
a, =—A sin(a)+ A, cos(a) A=T,sina

Et les formules de trigonométrie permettent de passer a
I’angle double.
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a,=T,cos’a+T, sin"a= cos(—2a)

TI +T|| +T| _Tu
2 2
. T,-T, ..
a,=(T, -T, )coswsma:Tsm(—Za)

11.
Commencons par positionner un repére plan avec une origine O et la base constituée par les vecteurs
propres.

Dans ce plan on peut positionner les vecteurs n et t dont le positionnement angulaire est donné par I’angle

alpha.

Sur I’axe normal, on peut repérer les
deux points aux distances définies par les L

deux valeurs propres Tl et TIl. Le milieu | e
de ces deux points nous détermine le | )
point C tel que

On peut maintenant représenter le vecteur
CM de module (T, — Ty)/2 et formant un
angle -2a avec I’axe normal

Le vecteur image A(n) étant la somme
vectorielle des deux vecteurs précédents,
on constate sans probléme que lorsque
I’angle alpha varie, le point M décrit un
cercle dans le repere tournant associe aux !
vecteurs n et t. C’est le cercle de Mohr du I
plan des vecteurs propres.

AE

i

S~

A partir de cette construction, on constate que lorsque que I’on trace une
droite joignant le point a valeur propre minimale T, au point courant du
cercle M associé a notre vecteur normal n, on obtient un angle alpha avec
cette normale. Cette droite est paralléle a la direction du vecteur propre
maximal E;.

Et de facon duale, la droite qui joint le point & valeur propre maximale T,
au point courant M nous donne une direction parallele au vecteur propre
minimal E;;. On voit que le cercle de Mohr contient de fagon intrinseque
des indications sur les vecteurs propres de notre application tensorielle.

12.
Comme pour ’ellipse de Lamé, ce cercle peut étre obtenu en faisant varier progressivement I’angle entre la
direction principale et le vecteur unitaire normal. En faisant une construction pas a pas, on constate que le
point extrémité du vecteur image décrit un cercle dans le repére associé au vecteur normal et au vecteur
tangent. Mais, contrairement a la construction de ’ellipse de Lamé, les directions principales sont en
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mouvement par rapport a 1’observateur. En général, on représente le cercle de Mohr en plagant 1’axe normal
n horizontal.

13.
Le plan contenant le vecteur unitaire normal et son vecteur image sera appelé le plan de Mohr.

Si le vecteur unitaire normal appartient a un plan principal, ’extrémité du vecteur image est situ¢ sur un
cercle dont le centre est sur I’axe normal et dont les points intersections avec I’axe normal ont des abscisses
égales aux valeurs propres associées aux vecteurs propres du plan principal.

Comme nous avons en général trois valeurs propres distinctes, on obtient un ensemble de trois cercles appelé
tri cercle de Mohr.

14,
On démontre que si le vecteur normal n’appartient & aucun des plans principaux, I’extrémité du vecteur
image est a I’intérieur du tricercle de Mohr.

Les projections du vecteur image sur les vecteurs de base du plan de Mohr nous donnent le vecteur normal et
le vecteur tangent.

15.
Avec cette figure, on constate que la plus grande valeur du
vecteur normal est égale a la valeur propre la plus grande, la
plus petite valeur est celle de la valeur propre la plus faible.

Enfin la plus grande valeur du vecteur tangent est égale au
rayon du plus grand des cercles, soit la demi différence entre la A—,:(ﬁ_A—(ﬁ))ﬁ:Nﬁ
plus grande valeur propre et la plus petite valeur propre. {f:ﬁAA(ﬁ NRTT
16.

Dans cette legon, nous avons vu comment, en partant d’une représentation d’un tenseur de second ordre sous
forme d’une matrice diagonale donnant les valeurs propres dans les directions principales, nous pouvions
associer a notre application tensorielle deux représentations graphiques. L’une conduit a une forme
tridimensionnelle appelée ellipsoide de Lamé, 1’autre conduit a une forme bidimensionnelle dénommeée tri-
cercles de Mohr. Dans la lecon suivante, nous allons pouvoir utiliser les cercles de Mohr pour le tenseur
quadratique associé a une section plane.
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1-3
DESCRIPTIONS

Applications

1.
Avec cette présentation, nous allons, sous forme d’exercice mettre en application la notion de repere et voir
comment la représentation de Mohr permet dans certains cas d’obtenir graphiquement les valeurs propres et
les vecteurs propres d’un tenseur du second ordre. Pour cela nous allons utiliser les propriétés
caractéristiques d’une section plane.

2.
Parmi les solides déformables que nous pourrons
étudier ultérieurement, les poutres vont jouer un réle
particulier. Géométriquement elles se présenteront
sous forme d’un domaine tridimensionnel mais
I’une des dimensions est plus grande que les deux
autres.

Concréetement, pour générer ce domaine, il faut se
donner une forme géométrique dans un plan. A cette
forme nous associerons son isobarycentre G.

Puis en promenant I’ensemble le long d’une courbe
dans I’espace, on décrira notre poutre délimitée par
une section origine et une section extrémité.

3.
En se placant dans le plan de definition de notre section
déterminée par son contour, il convient de positionner >
I’isobarycentre. Ce dernier est défini par une intégrale |
portant sur toute la section avec 1’élément de surface pour R
variable et le vecteur position pour intégrante. Cette
définition permet d’obtenir notre isobarycentre de fagon
intrinséque a la surface c’est-a-dire dans son reférentiel, z
mais dans la pratique il sera nécessaire d’utiliser un repere
avec une origine 0 et des axes. En utilisant la relation de
Chasle, on peut facilement déterminer le vecteur position
de I’isobarycentre dans ce repere. Le vecteur position d’un 0o X
point M courant de notre section plane est connu dans ce | 1
repere par ses composantes. A partir de ces vecteurs, on Y6 :§
peut écrire les coordonnees scalaires de positionnement de
I’isobarycentre dans le repere.

4,
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Les grandeurs intégrales que nous venons d’obtenir représentent les deux moments statiques de notre section

— plane dans le repére d’origine O. Ces moments

Ezf statiques sont associés aux vecteurs de base, mais
' aussi au point origine du repere.

ot
]
—_—

! ~ 7 '£; En changeant simplement d’origine, on obtient de
| nouvelles valeurs. Il est a noter que si 1’on fait le
calcul en prenant 1’isobarycentre comme origine, le
moment statique est nul.

! Le plus remarquable est que ce resultat est valable
I quel que soit ’orientation de I’axe passant par
I’isobarycentre. On peut définir 1’isobarycentre en
disant que c’est le point du plan pour lequel tous les
moments statiques sont nuls.

_._1'._._._._._._ —_—— . — .

0! T
| M (GE,)=[X,ds=0
5

QY

5.
Dans 1’étude de la déformation des poutres, il sera
aussi nécessaire d’utiliser les notions de moments
quadratiques qui sont des intégrales du méme type,
I’intégrante étant des distances ¢levées au carré.

1(O:e,)= Ixzz ds
S

tryiv

—

Et D’on utilisera aussi les produits quadratiques,
intégrales obtenues avec le produit des coordonnées
comme intégrante. Il est a noter que pour une section
plane symétrique par rapport a I’un des axes, le produit or___x________ T T 0= bt

quadratique est nul. P(O;(;i,eﬁj):jxi X; ds
S

N

6.
A partir des résultats précédents, il est possible d’envisager un changement de repere obtenu par simple
changement d’origine. Connaissant le moment quadratique pour un axe passant par une origine O
quelconque, on veut calculer le moment quadratique pour la méme orientation d’axe mais passant par
I’isobarycentre.

Pour cela, il suffit d’utiliser les formules de changement de repére par translation. X; =Xig + X,

11 suffit alors de développer le calcul d’intégrale. Dans le dernier membre de 1’égalité, la premiére intégrale
nous donne I’aire de notre section plane, la seconde représentant un moment statique pour un axe passant par
I’isobarycentre est nulle, et enfin la troisiéme représente le moment quadratique pour 1’axe passant par
I’isobarycentre.

Au final, on obtient une formule traduisant le théoréme de changement d’origine dit de Huygens. Attention,
cette formule n’est valable que si le second point est l’isobarycentre. Elle ne peut pas étre utilisée
directement entre deux points quelconques du plan. Avec cette relation de Huygens, on constate que, pour
une direction donnée, le moment quadratique sera minimal pour 1’axe passant par 1’isobarycentre.

1(Qe)=x,s"S +1(Gie,)
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Aprés un changement de repére par translation on peut s’interroger sur les relations existantes dans le cas
d’un changement de repeére par rotation. Nous allons faire I’application en prenant 1’isobarycentre pour
origine des deux repeéres.

On écrit le vecteur position dans les deux repéres. Pour avoir les relations de changement de coordonnée, il
faut appliquer les formules de changement sur les vecteurs de base.

En nous pouvons ainsi exprimer les nouvelles coordonnées en fonction des anciennes.

{ X, =X,cosa +X,sina

X, =—X;sina +X, cosex

Relations tres utiles pour exprimer les moments quadratiques et le produit quadratique du nouveau repére en
fonction des anciennes coordonnées. Ce qui nous permet de relier les moments quadratiques et produits
quadratiques entre eux.

1(G;E,)=(cosa)’ | (G; E)—Zcowsin a P(G; E,E)+(sin af | (G;Ez)
P(G; E,, ET,)= 00S &SN a(l (G; El)— I (G; Ez))+ [(cos a)f —(sina)’ ]P(G; E,, E)

8.
Les relations précédentes peuvent étre avantageusement résumeées avec une formulation matricielle avec des
notations abrégées évidentes.

I -P cosa Sina I, -P,)\(cosa —sina
_PI,II I —sina cosa _Pl,Z I, sina cosa

On voit ainsi apparaitre une application tensorielle du second ordre représentée par le tenseur quadratique qui
admet différents représentants selon la base d’étude.

o5, ear(s ee

Par changement de base, on peut obtenir un représentant matriciel diagonal.
— (I, O
1G)= . —)

0 I|| (NI J Nu

Pour connaitre les vecteurs propres et directions principales il suffit d’annuler I’expression donnant le
produit quadratique en fonction de 1’angle de changement de base.

P(G; E,, a):cos asina (I (G; El)— I (G; E))—f- [(cos a) —(sina)’ ]P(G; E,, E;)

P(G;E,E—“>): sin 2«

(1(G:E ) 1(6:E; )+ cos 2« P(G:E] E;)

Apres étre passé par I’angle double, on peut obtenir le positionnement des vecteurs propres.
2P(6:E, ;)

tanza:l(G;E)—l(G;Ej)

9.
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Il est possible de retrouver ce résultat a partir de la représentation
graphique de Mohr. Pour cela on va considérer le représentant matriciel TG) I, =B,
du tenseur dans la base initiale. “l-p, 1 (EE')
Avec cette expression tensorielle, on peut calculer les vecteurs images — .
de nos deux vecteurs de bases. AGE )=1G).E,

Pour faire le calcul, il faut que le représentant matriciel du tenseur etle  4((;: E =1, E -~ ])1 Lk,
représentant matriciel du vecteur soient exprimés dans la méme base. T

, . A G,E 5 +1, E,
Pour représenter graphiquement ces vecteurs nous allons nous placer -
dans le plan de Mohr déterminé par le vecteur normal et le vecteur tangent.

E — -
’ AGE)=1,.E -1, F,

n=hoe 1=k Dans le cas du vecteur image du premier vecteur de base, le vecteur normal
est justement ce vecteur de base. Tout naturellement nous prendrons le
deuxieme vecteur de base pour le vecteur tangent ce qui nous permet de

 dessiner le vecteur image dans le plan de Mohr.

2

y . . . . | } -P. E+1£§

Pour le vecteur image du deuxieme vecteur de base, il faut faire ; o e F
une rotation de 90° de la base précédente pour que le vecteur ‘
normal du plan de Mohr soit porté par le deuxieme vecteur de la
base. De fait le premier vecteur de la base est opposé au vecteur
tangent.

-

£

Les extrémités des deux vecteurs images nous donnent deux points
qui se trouvent sur le cercle de Mohr. Pour obtenir le centre de ce
_ dernier, 1l faut trouver I’intersection de la médiatrice des deux points
Iy C I/~ avec I’axe horizontal du repére car le centre est situé a égale distance
" des deux points et sur I’axe normal. Mais en fait on constate que ce
centre est aussi le milieu des points dans le cas de notre exemple.

On peut tracer le cercle de Mohr qui par intersection avec 1’axe
normal nous donne les deux valeurs propres.

10. i ‘ [:1 ]*R
Pour obtenir ces dernieres, il faut, en utilisant le théoreme de R | ;ﬁ;_f-lﬂ
Pythagore, calculer le rayon du cercle. 4 2
Les valeurs propres sont égales a la distance positionnant le centre ! fgﬁ
du cercle de Mohr a laquelle on ajoute ou on retranche la valeur du ;o
rayon.

P,

2

Enfin nous avons vu que si I’on tragait la droite passant par le point de valeur propre minimale et le point
courant du cercle associé par exemple au premier vecteur de base, on obtenait dans notre base une direction
portée par le vecteur propre maximal.
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Et de facon duale, la droite qui passe par le point de valeur propre

maximale et le point courant nous donne une direction portée par le [fr;" ";IE
vecteur propre minimal. LN /
B} B N,
k, 2P, e NN,
tan 2 =——=— . N,
p =7 IL-1, Avec cette derniére !
L figure reprenant les résultats précédents, on peut obtenir

facilement le double de I’angle formé entre les vecteurs de base
et les vecteurs propres.

L

o

11.
En relation de ce qui vient d’étre fait,
I’auditeur est invité a positionner le
barycentre et a définir les valeurs
propres et vecteurs propres pour la
section plane représentée.

60 t

12.
En conclusion, avec cette application sur les grandeurs caractéristique d’une surface plane, nous avons pu
constater 1’intérét de définir plusieurs reperes pour décrire un méme objet. Nous avons travaillé avec la
notion de tenseur du second ordre dans un espace vectoriel a deux dimensions. Enfin la construction
graphique a partir du cercle de Mohr nous a été utile pour obtenir aussi bien les valeurs propres que les
vecteurs propres de notre application tensorielle.
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