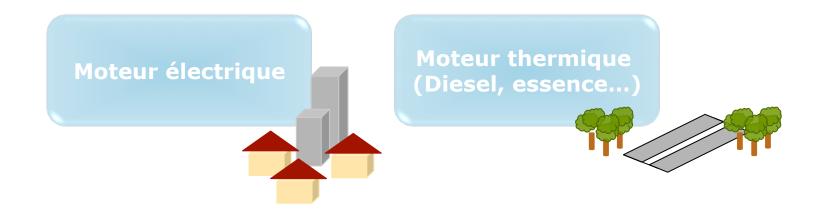


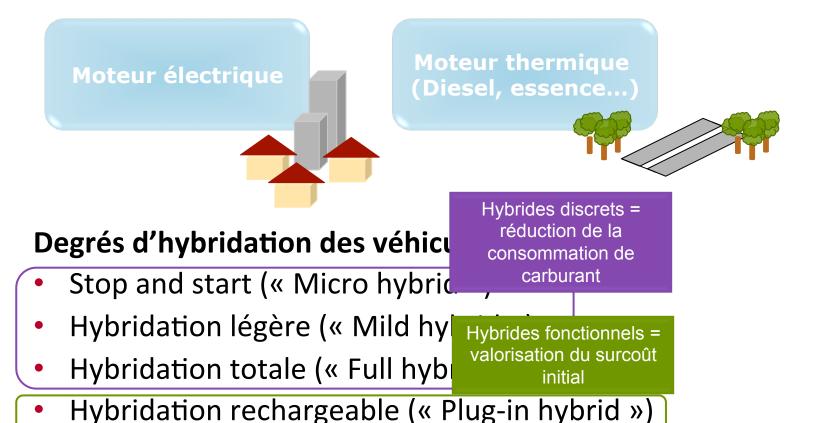
Véhicules hybrides


Amélie DANLOS

Maitre de conférences

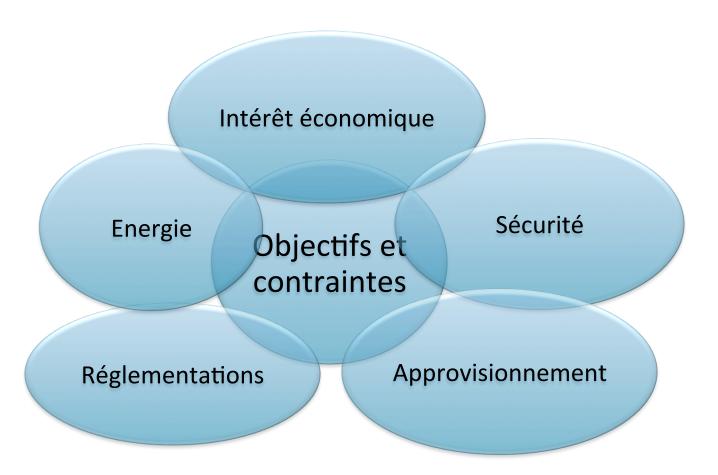
1 – Fournir de l'énergie au véhicule

Hybridation = au moins 2 sources d'énergie



Avantages du moteur thermique

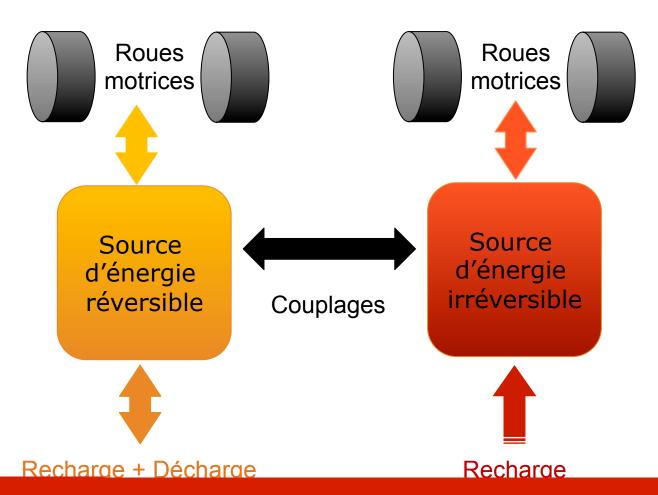
+ Avantages du moteur électrique


1 – Fournir de l'énergie au véhicule

1 – Fournir de l'énergie au véhicule

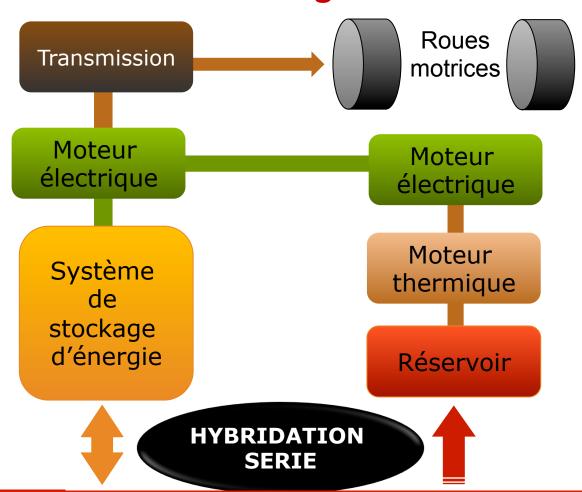
2 - Stocker de l'énergie

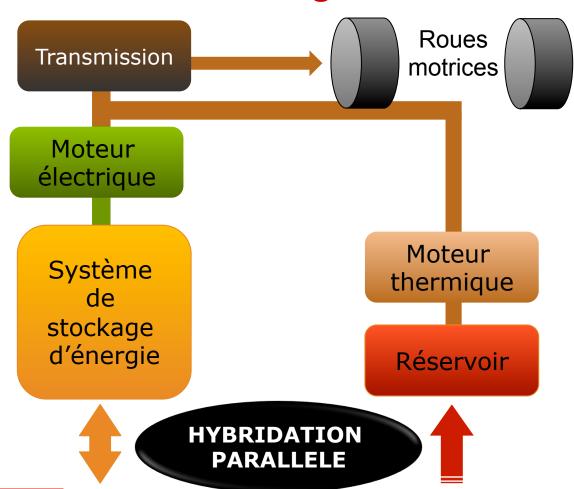
Accumulateurs (Batterie)


• Conversion réversible de l'énergie chimique en énergie électrique (réactions électrochim de recharge de l'énergie chimique en énergie électrique (réactions électrochim de recharge de l'énergie chimique en énergie électrique (réactions électrochim de recharge de l'énergie chimique en énergie électrique (réactions électrochim de recharge de l'énergie électrochim de l'énergie de l'énergie électrochim de l'énergie électrochim

Supercondensateurs

• Stockage direct de l'électricité sous form recharge électrostatique


2 - Stocker de l'énergie



2 – Stocker de l'énergie

2 – Stocker de l'énergie

Types d'hybrides	Micro	Mild	Full	Plug-in
Autonomie tout électrique	0	0	0 à 2 km	20 à >100 km
Gain en consommation sur cycle normalisé	5 à 7 %	15 à 25 %	25 à 40 %	40 à 60 %
Surcoût à l'achat	200 à 500 €	900 à 2 200 €	2 500 à 5 000 €	5 000 à 20 000€

Source: F. Badin, Les véhicules Hybrides – Des composants au système, IFP Energies Nouvelles Publications, Editions TECHNIP, 2013.

3 – Bilan des hybrides

Véhicule	Essence (type Peugeot 308, Renault Mégane)	Hybride discret
Milieu urbain	210 g CO2/km	114 g CO2/ km
Milieu routier	128 g CO2/km	97 g CO2/ km
Milieu autoroutier	166 g CO2/km	149 g CO2/ km

Source: F. Badin, Les véhicules Hybrides – Des composants au système, IFP Energies Nouvelles Publications, Editions TECHNIP, 2013.

4 – Innover dans les solutions hybrides

Supercondensateurs haute densité (graphène et nanotubes de carbone)

- Augmente la capacité des supercondensateurs
- Densité d'énergie jusqu'à 155,6 Wh/kg

Stockage de l'énergie électrique dans la structure du véhicule (exemple: Volvo Car Group en octobre 2013)

 Matériaux: fibres de carbone, batteries et supercondensateurs nanostructurés

4 – Innover dans les solutions hybrides

Routes électriques

Programme Européen de Recherche FABRIC (depuis 2014)

http://www.fabric-project.eu/

Feasibility analysis and development of on-road charging solutions for future electric vehicles

Sites de tests en France (Satory), Italie et Suède

Véhicules Hybrides

Conclusions

- Véhicule hybride = Plusieurs sources d'énergie
 - + Systèmes de stockage d'énergie
 - + Convertisseurs d'énergie
- Différents types d'hybridation (micro, mild, full, plug-in, hybridation série, hybridation parallèle...).
- Des solutions innovantes à creuser.