Introduction to
Functional Programming in OCaml/

Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 5 - Sequence 2: Getting information in and out

-

. 2 i

g e‘“\E P44’ 2

n @ > rd

22 § A% lrrzia — OCamla®
E AN INVENTORS FOR THE DIGITALWORLD

Back to the toplevel

We have been using OCaml's toplevel extensively up to now.
P it reads our program, incrementally
» it prints the result of the execution

. we could do without input/output operations!

For real programs, OCaml offers a rich set of 1/O primitives.
We will now look at some of them.

But let’s first meet the unit type.

The unit type

O
— s unit =)

The unit type
» the typical input or result type
of a function with side effects

has only one value
also called unit
written ()

vvyyy

why this syntax? will be clear in a few slides

Simple output

Printing an integer
print_int;;

— o int —> unit = <fun>

This function
P takes an integer

P prints the integer on standard output
» returns the value () of the unit type

Simple output

Printing an integer
print_int 12345;;
12345— : unit = ()

What happens

P> 12345 is printed on standard output
P the toplevel prints its message, which says

» the evaluation returns the value ()
» of the unit type
» there is no identifier bound to it - :

Simple input

Reading a line
read line;;

— : unit —> string = <fun>

This function
P takes as input the value () of the unit type

P reads a line of characters from standard input as a string

Simple input

Reading a line
read line();;
some text

— : string = "some,_text"

What happens

read_line receives the argument ()
it starts reading from standard input

we type some text and hit return

vvyyvyy

the toplevel prints its message, which says
» the evaluation returns the value "some text"
» of the string type
» there is no identifier bound to it - :

About the syntax

See why () for the unique value of the unit type?

read line()

This looks like a function with no argument in other languages.
It's more familiar for outsiders!

Remember, it really is:

read line ()

Simple input and output

Printing other base types
print_char : char -> unit
print_string : string —> unit
print_float : float —-> unit
Flushing and newline

val print_newline : unit -> unit

Print a newline and flush standard output.

Simple input and output

There is much more

standard input, standard output and standard error
create, open and close files
read and write on channels

sophisticated parsing, like scanf, well typed!

vVvYyyvyy

see the manual section on Pervasives

Notice: some of these functions are not implemented
in the toplevel running in your browser.

10

Summary

Unit type, Input and Output

> The unit type is often used with functions with side effects,
like print_int : int -> unit

» read_line() is really read_line applied to)

v

We now know how to perform basic input/ouput

» OCaml has many more sophisticated input/output functions,
look at the reference manual to know more

11

