
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 0 - Sequence 1:

Functional Programming : a bit of history and motivation



Computing and programming

Computing
the study of algorithmic processes that describe and transform information.
The fundamental question is “What can be (efficiently) automated?”

1989 ACM report on Computing as a Discipline

Basic components of computing
a program that describes the intended transformation of information
a machine that executes the program

Many machines, and many ways of writing a program.
Some were invented well before the first modern computer.

Let’s recall a bit of their history

2



Hilbert, ...

Hilbert’s decision problem (1928)

Can we devise a process to determine
in a finite number of operations
whether a first-order logic statement is valid?

The answer to this question is “no”, but to find it, one needs to make precise what is
I an operation and
I a process of computation

3



Turing ...
Alan Turing answers Hilbert’s question in 1936

inventing the now world-known Turing machine

Theoretical foundation of modern computers and imperative
programming
I tape ≈ addressable read-write memory

with stored program
I automaton ≈ microprocessor

4



Turing Machines and Imperative programming
In an imperative program we read, write, perform operations and take decisions
based on the contents of memory cells that hold the contents of variables
like c,n,res in the following Java simple example.

public class Factorial
{

public static int compute(int n)
{

int res = 1;
for (int c = 1; c <= n; c++)

res = res * c;
return res;

}
}

5



Church ...

Alonzo Church (Alan Turing’s advisor)
Also answers Hilbert’s question in 1936 with a completely different
approach, inventing the λ-calculus
I λx .M = nameless function with formal parameter x

and body M (abstraction)
I MN = call function M with actual parameter N

(application)

Theoretical foundation of functional programming

(λx .M)N →β M[x := N]

The β reduction rule is the one and only computational
device in the system!

6



The λ-calculus and Functional programming
In a functional program we define (possibly recursive) functions,
and compose and apply them to compute the expected results.

Like in the following example

let rec fact =
function n -> if n=0 then 1 else n*(fact (n-1))

In a truly functional programming language, functions are first class citizen.
They can be:
I named
I evaluated
I passed as arguments
I returned as results
I used everywhere an expression can fit

The value of this will become evident at the end of the course!7



The λ-calculus and Functional programming

(Ab)using Church’s original notation one would write the second line

λ n.if n=0 then 1 else n*(fact (n-1))

That’s why you hear all this excitement about lambdas
being introduced in Java and C++ in these recent years...
yes, they are just introducing real functions in the language!

8



The Church-Turing thesis

Equivalence of Turing machines and λ-calculus (Turing, 1937)
A function is computable by a Turing machine, if and only if
it is computable using λ-calculus

Church-Turing thesis
A function that is computable by any computing device
is also computable by a Turing machine

In simpler terms
All general purpose programming languages are
computationally equivalent

9



But programming languages are not born equal...
They have different expressiveness
The quest for more expressive constructs is never ending, leading to
I different data representations
I different execution models
I different mechanisms of abstraction

And there are many other desirable features
I safety of execution
I efficiency
I maintainability
I ...

Depending on the problem at hand, some programming
languages may be way better than others.

10



An early assessment from FORTRAN’s very creator

Functional programs deal with structured data, ... do not name their argu-
ments, and do not require the complex machinery of procedure declarations
...

Can programming be liberated from the von Neumann style?
John Backus, Turing lecture, 1978

11



Why functional programming is on the rise

Quoting the report on Introductory Computer Science Education at CMU
http://www.cs.cmu.edu/~bryant/pubdir/cmu-cs-10-140.pdf,
there are some clear emerging trends

Need for greater software reliability
(Pure) functional programs are easier to prove correct than imperative ones

Harnessing the power of parallel computation
A carefully chosen set of higher order functions allows to
write programs that are easily parallelisable.

A very well known example: MapReduce

12

http://www.cs.cmu.edu/~bryant/pubdir/cmu-cs-10-140.pdf


Functions all around us

The power and expressivity of functional programming
is being recognised widely:
I Java 1.8 introduces lambda expressions
I C++ version 11 introduces lambda expressions

No matter what your preferred programming language is,...
understanding functional programming principles
is now a basic skill.

We will learn them using the OCaml language!

13



Credits

Photos
David Hilbert’s photo :
https://commons.wikimedia.org/wiki/File:Hilbert.jpg, public domain.
Alan Turing’s photo :
https://fr.wikipedia.org/wiki/Alan_Turing#/media/File:Alan_Turing_Aged_16.jpg, public domain.
Alonzo Church’s photo :
https://en.wikipedia.org/wiki/File:Alonzo_Church.jpg, under fair use terms.

14

https://commons.wikimedia.org/wiki/File:Hilbert.jpg
https://fr.wikipedia.org/wiki/Alan_Turing#/media/File:Alan_Turing_Aged_16.jpg
https://en.wikipedia.org/wiki/File:Alonzo_Church.jpg

