
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 6 - Sequence 0: Structuring software with modules

Programming in the large

I So far, we have seen how to define toplevel types, functions and basic values.
I We have programmed in the small, defining data structures and algorithms.
I OCaml core language is great to write them in a safe, sound and efficient way.
I In a large project, one difficulty is to manage the high number of definitions.
I To not be lost into the implementation details, abstraction is the key.
I An abstraction is a concept that can be understood intrinsically,

without a precise knowledge of its implementation.
I An abstraction can be built on top of other abstractions.
I Good architectures are made of layers of abstractions.

2

The rules of the game are different

I The program must be divided into components.
I Identifiers must be organised to avoid naming conflicts.
I The layers of abstraction must be enforced.
I Glueing components together should be feasible after their development.

The module language of OCaml
fulfills all these requirements!

3

Overview of Week 6

1. Structuring software with modules
2. Information hiding
3. Case study: An abstract type for dictionaries
4. Functors
5. Modules as compilation units

4

Module as a namespace

I We have seen that the dot-notation can be used to access a module component.
I List.length refers to the length function of the module List.
I If you want to avoid writing “List.”, it is possible to open the namespace of

the module List by writing “open List”
I After that command, length implicitly refers to List.length.
I If two modules contain two identical identifiers,

the definition from the last opened module is used.

5

Implementing a module
I To define a module:

module SomeModuleIdentifier =
struct

(∗ a sequence of definitions ∗)
end

I The identifier of a module must start with an uppercase letter.
I A module contains value, type and exception definitions.
I A module can be aliased:

module SomeModuleIdentifier =
SomeOtherModuleIdentifier

6

A module providing a stack data structure I
module Stack = struct

type ’a t = ’a list
let empty = []
let push x s = x :: s
let pop = function

| [] -> None
| x :: xs -> Some (x, xs)

end;;
module Stack :

sig
type ’a t = ’a list
val empty : ’a list
val push : ’a -> ’a list -> ’a list
val pop : ’a list -> (’a * ’a list) option

end
7

A module providing a stack data structure II

let s = Stack.empty;;
val s : ’a list = []
let s = Stack.push 1 s;;
val s : int list = [1]
let x, s =

match Stack.pop s with
| None -> assert false
| Some (x, s) -> (x, s);;

val x : int = 1
val s : int list = []
let r = Stack.pop s;;
val r : (int * int list) option = None

8

Module signatures

I The type of a module is called a signature or an interface.
I As we have seen on the previous example, OCaml infers signatures.
I The programmer can force a module to have a specific signature.
I Publishing well-designed signatures is a very important communication aspect in

a large project, this is the topic of the next sequence.
I A signature has the following shape:

sig
(∗ A sequence of declarations of the form: ∗)
val some_identifier : some_type
type some_type_identifier = some_type_definition
exception SomeException of some_type

end

9

Hierarchical structures of modules

I A module can also contain module definitions.
I A signature can also contain module signatures.
I If the module B is defined inside module A, “A.B.” is the path to its namespace.
I It is forbidden to define two submodules with the same name in a module.

10

A submodule for trees in a module for forests I
module Forest = struct

type ’a forest = ’a list
module Tree = struct

type ’a tree = Leaf of ’a | Node of ’a tree forest
end

end;;
module Forest :

sig
type ’a forest = ’a list
module Tree :

sig
type ’a tree = Leaf of ’a | Node of ’a tree forest

end
end

11

A submodule for trees in a module for forests II

open Forest.Tree
let t = Leaf 42;;
val t : int Forest.Tree.tree = Leaf 42

12

