Introduction to
Functional Programming in OCaml/

Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 6 - Sequence 0: Structuring software with modules

-

. 2 i

g e‘“\E P44’ 2

n @ > rd

22 § A% lrrzia — OCamla®
E AN INVENTORS FOR THE DIGITALWORLD

Programming in the large

vVvvyVvVvyy

vy

So far, we have seen how to define toplevel types, functions and basic values.
We have programmed in the small, defining data structures and algorithms.
OCaml core language is great to write them in a safe, sound and efficient way.
In a large project, one difficulty is to manage the high number of definitions.

To not be lost into the implementation details, abstraction is the key.

An abstraction is a concept that can be understood intrinsically,
without a precise knowledge of its implementation.

An abstraction can be built on top of other abstractions.

Good architectures are made of layers of abstractions.

The rules of the game are different

» The program must be divided into components.
» Identifiers must be organised to avoid naming conflicts.
> The layers of abstraction must be enforced.

» Glueing components together should be feasible after their development.

The module language of OCam/
fulfills all these requirements!

Overview of Week 6

oA~ b=

Structuring software with modules
Information hiding

Case study: An abstract type for dictionaries
Functors

Modules as compilation units

Module as a namespace

v

We have seen that the dot-notation can be used to access a module component.
List.length refers to the length function of the module List.

If you want to avoid writing “List.", it is possible to open the namespace of
the module List by writing “open List”

After that command, length implicitly refers to List.length.

If two modules contain two identical identifiers,
the definition from the last opened module is used.

Implementing a module

» To define a module:
module SomeModuleIldentifier =
struct
(* a sequence of definitions)
end

» The identifier of a module must start with an uppercase letter.
» A module contains value, type and exception definitions.

» A module can be aliased:
module SomeModuleldentifier =
SomeOtherModuleldentifier

A module providing a stack data structure |

module Stack = struct
type ’a t = ’a list
let empty = []

let push x s = x :: s
let pop = function
| [J -> None
| x :: xs —> Some (x, xs)
end;;
module Stack :
sig

type ’a t = ’a list

val empty : ’a list

val push : ’a -> ’a list -> ’a list

val pop : ’a list -> (’a * ’a list) option
end

A module providing a stack data structure |l

let s Stack.empty; ;
val s : ’a list = []
let s Stack.push 1 s;;
val s : int list = [1]
let x, s =
match Stack.pop s with
| None -> assert false
| Some (x, s) —> (x, s);;
val x : int = 1
val s : int list = []
let r = Stack.pop s;;
val r : (int * int list) option = None

Module signatures

The type of a module is called a signature or an interface.
As we have seen on the previous example, OCaml infers signatures.

The programmer can force a module to have a specific signature.

vvyyy

Publishing well-designed signatures is a very important communication aspect in
a large project, this is the topic of the next sequence.

v

A signature has the following shape:
sig
(+ A sequence of declarations of the form: x)
val some_identifier : some_type
type some_type_identifier = some_type_definition
exception SomeException of some_type
end

Hierarchical structures of modules

10

» A module can also contain module definitions.
» A signature can also contain module signatures.
» If the module B is defined inside module A, “A.B." is the path to its namespace.

» It is forbidden to define two submodules with the same name in a module.

11

submodule for trees in a module for forests |

module Forest = struct
type ’a forest = ’a list
module Tree = struct
type ’a tree = Leaf of ’a | Node of ’a tree forest
end
end; ;
module Forest
sig
type ’a forest = ’a list
module Tree
sig
type ’a tree = Leaf of ’a | Node of ’a tree forest
end
end

A submodule for trees in a module for forests Il

open Forest.Tree
let t = Leaf 42;;
val t : int Forest.Tree.tree = Leaf 42

12

