
Introduction to
Functional Programming in OCaml
Roberto Di Cosmo, Yann Régis-Gianas, Ralf Treinen

Week 5 - Sequence 1: Getting and handling your Exceptions

Exceptions and the exn type

OCaml provides exceptions for signalling and handling exceptional conditions.
I exceptions are constructors of a special sum type exn
I these constructors can have arguments, like all other constructors
I new exceptions can be defined at any time
I this makes the exn sum type special:

unlike the usual sum types, it can be extended
I exceptions cannot be polymorphic

2

Declaring exceptions

Exceptions are declared using the exception keyword

exception E;;

exception E

They are just constructors:

E;;

− : exn = E

3

Raising exceptions

Exceptions are signalled using the raise keyword

raise E;;

exception: E.

When an exception is raised, the computation is immediately stopped.

let _ = raise E in [1;2];;

exception: E.

Let’s see a more realistic example.

4

Taking the head of an empty list I
exception Empty_list;;
exception Empty_list

(∗ define a head function that uses the exception ∗)
let head = function

a::r -> a
| [] -> raise Empty_list;;

val head : ’a list -> ’a = <fun>

(∗ let ’ s test ∗)
head [’a’;’b’];;
- : char = ’a’
head [];;
Exception: Empty_list.

5

Handling exceptions
Exception can be captured, using the try with construct.

try
e

with
p1 -> e1

| p2 -> e2
| ...

I e is evaluated
I if E is raised, match it with the patterns in the with clause
I you can use any pattern of type exn
I if E matches pattern pi , evaluate expression ei
I all the ei must have the same type as e

6

Handling examples I

(∗ multiplying all values of an integer list ∗)
(∗ think of a 1 million element list with a 0 at the end ∗)

let rec multl = function
[] -> 1
| a::rest -> if a = 0 then 0 else a * (multl rest)

;;
val multl : int list -> int = <fun>

7

Handling examples II

(∗ use exceptions to return as soon as we see a zero ∗)

exception Zero;;
exception Zero

let multlexc l =
let rec aux = function

[] -> 1
| a::rest -> if a = 0 then raise Zero else a * (aux rest)

in
try aux l with Zero -> 0;;

val multlexc : int list -> int = <fun>

8

When things go wrong

Run-time errors
OCaml catches type errors at compile time, but other errors may occur at runtime
I division by zero
I incomplete pattern matching
I out-of-bound access to indexed data structures like arrays
I ...

Capturing errors as exceptions
In OCaml, these errors do not crash the program:
they raise an exception, which you can handle!

Let’s see some examples.

9

Meet the exceptions I

(∗ division by zero ∗)
3/0;;
Exception: Division_by_zero.

(∗ out of bound access to mutable data structures ∗)

let v = [|1;2;3|];;
val v : int array = [|1; 2; 3|]
v.(0);;
- : int = 1
v.(3);;
Exception: Invalid_argument "index␣out␣of␣bounds".

10

Meet the exceptions II

(∗ incomplete pattern matching ∗)

let drop = function
| a::rest -> rest;;

Characters 47-75:
...........function
| a::rest -> rest..

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a case that is not matched:
[]
val drop : ’a list -> ’a list = <fun>
drop [1;2;3;4;5];;
- : int list = [2; 3; 4; 5]

11

Meet the exceptions III

drop [];;
Exception: Match_failure ("//toplevel//", 8, 11).

12

Summary

Exceptions
I Constructors of a special exn sum type.
I Declared and raised using exception and raise.
I Handled using the try ... with ... construct.
I Useful for signalling and handling exceptional conditions,

and for altering the flow of control.
I Good to know: raising and handling exceptions is very fast.

13

