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A new method is introduced for the analysis of ‘omics’ data derived from crossover designed drug or
nutritional intervention studies. The method aims at finding systematic variations in metabolic profiles
after a drug or nutritional challenge and takes advantage of the crossover design in the data. The method,
which can be considered as a multivariate extension of a paired t test, generates different multivariate
submodels for the between- and the within-subject variation in the data. A major advantage of this
variation splitting is that each submodel can be analyzed separately without being confounded with
the other variation sources. The power of the multilevel approach is demonstrated in a human nutritional
intervention study which used NMR-based metabolomics to assess the metabolic impact of grape/
wine extract consumption. The variations in the urine metabolic profiles are studied between and within
the human subjects using the multilevel analysis. After variation splitting, multilevel PCA is used to
investigate the experimental and biological differences between the subjects, whereas a multilevel
PLS-DA model is used to reveal the net treatment effect within the subjects. The observed treatment
effect is validated with cross model validation and permutations. It is shown that the statistical
significance of the multilevel classification model (p , 0.0002) is a major improvement compared to a
ordinary PLS-DA model (p ) 0.058) without variation splitting. Finally, rank products are used to
determine which NMR signals are most important in the multilevel classification model.
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Introduction
One of the major challenges in nutritional metabolomic

studies is the detection and identification of metabolites in
different biofluids that can be linked to the human nutrition
metabolome.1-3 In nutritional intervention studies, these
metabolic responses are often small and subtle since the
volunteers are generally healthy and in metabolic homeostasis.4,5

Moreover, the effects of the nutritional treatment tend to be
much smaller than the biological variation that exists between
the individuals.3,6-8

Taking advantage of the design of an experiment and the
underlying data structure can be useful to uncover minor
treatment effects.9,10 Since most traditional multivariate data
analysis techniques such as Principal Component Analysis
(PCA), Partial Least Squares (PLS) and Partial-Least Squares-
Discriminant Analysis (PLS-DA) do not take the experimental
design into account, the power of these multivariate methods
is not fully employed. Particularly, multivariate methods that

can optimally exploit the paired data structure in crossover
designed studies are lacking, even though this experimental
design is rather common in nutritional intervention trials.11,12

The particular strength of the crossover design is that treat-
ments (interventions) are evaluated on the same subjects,
allowing comparison at the individual level rather than on the
group level.13

A specific limitation of using PCA and PLS (-DA) in crossover
designed experiments is that the net treatment effect is not
separated from the biological variation between the subjects.
As a result, subtle treatment effects within the subjects are often
largely overwhelmed by the strong biological variation between
subjects.14,15 Recently, a combination of Analysis-of-Variance
(ANOVA) and Simultaneous Component Analysis (SCA) was
introduced that enables the analysis of metabolomic studies
with an experimental design.9,16,17 The basic principle of
ANOVA-SCA (ASCA) is the variation splitting property of
ANOVA which allows a separate analysis and interpretation
of the variation sources induced by the different factors in the
experimental design. A special case of ASCA is Multilevel
Simultaneous Analysis (MSCA).10,16 MSCA takes into account
the multilevel structure in the data, and is particularly suitable
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for the analysis of temporal and longitudinal crossover studies.
When only a single factor is regarded in the experimental
design, MSCA decomposes the data into an offset term, a
between-subject part and a within-subject part.9,18

In the present study, the variation splitting property of MSCA
is applied to a crossover designed human nutritional interven-
tion study in which the metabolic impact of grape/wine extract
consumption on the urinary 1H NMR profiles is evaluated. To
find systematic differences among the intervention groups,
multilevel PLS-DA is performed on the within-subject data. To
investigate the underlying variation in the between-subject
data, multilevel PCA or MLCA18 is used. The combination of
multilevel data analysis and PLS-DA is introduced as a new
multivariate approach to investigate treatment effects in cross-
over designed experiments.

To examine whether the use of multilevel PLS-DA indeed
results in an improved multivariate solution, its performance
is benchmarked against the ordinary PLS-DA approach. In this
assessment, the prediction error of the PLS-DA models are
determined by means of cross model validation,19 and com-
pared with the prediction errors of permuted data.20 The
combination of multilevel PLS-DA, cross model validation, and
permutation testing finally allows the selection and interpreta-
tion of candidate biomarkers that can be linked with the
intended treatment effect.

Experimental Section

Study Protocol. The study was carried out in the Consumer
Centre at Unilever R&D, Vlaardingen, The Netherlands. The
study had a double-blind, placebo-controlled crossover design
with two treatments, a 2-week run-in period, and two 4-week
consecutive intervention periods. The two treatments consist
of a placebo (Avicel PH101cellulose; FMC Biopolymer, PA) and
a mix of wine extract (Provinols, Seppic, France) and grape juice
extract (MegaNatural, Polyphenolics, CA). The mixture of wine
and grape juice extract contained 800 mg of polyphenols based
on gallic acid equivalents,21 and corresponds to approximately
80% of the normal daily intake of polyphenols (∼1 g/day).22

The extracts and the placebo were given daily, and adminis-
tered as nontransparent capsules.

In total, 29 male and female human subjects in the age range
of 35-75 years and mildly hypertensive (systolic blood pressure,
130-179 mmHg; diastolic blood pressure, < 100 mmHg)
participated in the study. Urine was collected in 2-L urine
collection vessels over a time span of 24 h after the interven-
tions, and stored at 193 K before use. The vessels were supplied
with a gelatinized layer of metaphosphoric acid (MFA, 15.5 g)
to stabilize the phenolic compounds and to inhibit bacterial
growth.

The subjects were asked to refrain from vitamin-, minerals-,
and other supplementation, as well as plant sterol or plant
stanol containing food. Furthermore, each of the volunteers
was requested to follow a similar dietary and lifestyle pattern
for the duration of the study. The protocol was approved by
the medical ethical committee of the University of Wageningen
and conducted in accordance with the ICH-GCP guidelines for
Good Clinical Practise (ICH GCP, 1996).

Sample Pretreatment. Urine samples were allowed to thaw
at room temperature. To 450 µL of each urine, 200 µL of
phosphate buffer solution (0.1 M Na2HPO4/0.1 M NaH2PO4)
and 50 µL of deuterium oxide (D2O) were added to adjust the
pH to 3.0 ( 0.2. The phosphate buffer solution furthermore
contains 0.01 mg/mL 3-(trimethylsilyl)propionic acid-d4 so-

dium salt (TSP) as a chemical shift reference. After homogeni-
zation, the sample was centrifuged at 10 000 rpm for 5 min.
Then, 650 µL of the clear urine supernatant was transferred
into a 2 mL amber vial and closed with a screw cap.

1H NMR Data Acquisition. One-dimensional 1H NMR spec-
tra were acquired on a 600 MHz Bruker Avance NMR spec-
trometer, equipped with a 60 µL flow probe and a Gilson 215
auto sampler. After transferring 60 µL of each sample into the
flow cell, 1D 1H NMR spectra were acquired with presaturation
of the water resonance using a noesy1dpr pulse sequence RD-
90°-t1-90°-tmix-90°-FID (Bruker Biospin, Germany). Here, t1 is
a 4 µs delay time, and tmix is the mixing time (150 ms). The
FIDs were collected into 32K points (128 scans) with a spectral
width of 9000 Hz, an acquisition time of 1.82 s, and a relaxation
delay of 3 s. During acquisition, the temperature was kept
constant at 300 K. The measurements were carried out in
random order in two separate NMR runs, consisting of 46 and
12 measurements, respectively. The urine samples from each
subject were kept together within the same NMR run, and
measured within 12 h after preparation.

1H NMR Data Processing. An exponential window function
was applied to the free induction decay (FID) with a line-
broadening factor of 0.5 Hz prior to the Fourier transformation.
The Fourier transformed NMR spectra were manually phase
and baseline-corrected and calibrated against the TSP methyl
resonance at δ 0.0 ppm. The NMR spectra were subdivided into
550 discrete regions (‘buckets’) of equal width (∆δ ) 0.02 ppm),
from which the integrated areas were determined using AMIX
(Analysis of Mixtures, Bruker GmbH, Germany). The spectral
region between δ 4.3-5.2 ppm was excluded from the data set
to avoid spectral interference of residual water. To compensate
for dilution effects, the urine profiles were normalized to the
integral of the methyl resonance of creatinine (δ 3.06-3.18
ppm).23,24 In this approach, creatinine clearance is considered
constant in the group of participating volunteers. As a result,
the excreted amount for each metabolite can be expressed as
mol/mol creatinine present in the urine samples. Metabolites
were identified using a database including reference spectra
of metabolites at different pH values (bbiorefcode-2-0-0 imple-
mented in Amix 3.7.3., Bruker Biospin GmbH).

Data Analysis. Data pretreatment, MSCA, PLS-DA, cross
model validation and permutation tests were performed using
Matlab (version 2008a, The MathWorks) and in-house written
Matlab routines. These routines (together with a tutorial) are
available via the Internet at http://pubs.acs.org or http://
www.bdagroup.nl/.

Mathematical Methods

Structure of the NMR Data Set. The structure of the data
set is shown in Figure 1. The following indices are used: j )
1,..., J for the number of spectral variables, k ) 1,..., K for the
number of intervention occasions, and i ) 1,..., I for the number
of subjects. The total number of NMR spectra in the data set
is represented by L () I × K).

Normalization. In the 1H NMR data-matrix D, with dimen-
sions L × J, L is the number of spectra and J is the number of
variables (chemical shifts). Each of the observed signal-intensi-
ties dlj is linearly related to the concentration level of a urine
metabolite in spectrum l. Since the excreted volumes of the
24 h urine are different for each subject, direct comparison of
the urinary metabolite compositions is not possible. A com-
monly used procedure to compensate for differences in the
excreted urine volumes is creatinine normalization.23-25 In this
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procedure, the peak area of the creatinine methyl resonance
at δ 3.12 ppm (Al) is used to normalize the raw NMR signals
intensities (dlj) in each spectrum l according to eq 1:

xlj )
dlj

Al
(1)

where xlj is the normalized NMR signal-intensity dlj in spectrum
l and Al is the peak area of the creatinine methyl resonance in
spectrum l.

Split-Up of Variation. In the normalized data matrix X, each
NMR variable is denoted by the scalar xikj. When separating
the variation in xikj into a between-subject term (biological
variation) and a within-subject term (nutritional variation), an
analysis of variance (ANOVA) model can be defined according
eq 2:

xikj ) µj + �ij + γikj + εikj (2)

where µj is the population mean (offset term); �ij is the
between-subject variation; γikj is the within-subject variation
and εikj is the variation due to experimental noise.26,27

As the currently investigated data set does not consist of
repeated measurements, the contribution of the variation term
εikj cannot be estimated. Decomposition of the remaining
variation terms is performed according to two consecutive
centring steps, and is similar to the variation splitting proce-
dures in ASCA9,16 and (Multilevel) Simultaneous Component
Analysis.10,18 As given in eq 3, the first centring step is applied
on the entire data set X and results in a mean-centered data
block (Xc) and an offset term (1Lxm

T ). The offset xm is an
estimation of µ, and contains the mean signal intensities of all
spectral variables j in X.

X ) 1Lxm
T + Xc (3)

In eq 3, Xc (L × J) contains the mean-centered data; 1L

(L × 1) contains ones, and xm
T (1 × J) contains the mean values

for each column in X. Concatenating the L row vectors, xm
T

results in a matrix 1Lxm
T (L × J). This matrix can be defined as

the offset term Xm.
On the mean-centered data (Xc), a second centring step is

performed according to eq 4. At this point, mean-centring is
applied per subject i over the K intervention occasions. The

mean for subject i (xbi) is referred to the between-subject term
and is different for each subject. The net variation around the
mean is described by the within-subject term Xwi and is
different for all observations in the data set. The variation
between and within the subjects are estimations of � and γ,
respectively.

Xci ) 1Kxbi
T + Xwi (4)

Here, Xci (K × J) contains the mean-centered data for
subject i and is part of matrix Xc; 1K (K × 1) contains ones;
xbi

T (1 × J) contains the mean values of each column in Xci

and Xwi (K × J) contains the mean-centered data per sub-
ject i.

When concatenating 1Kxbi
T for each individual into Xb

(L × J) and concatenating the I matrices Xwi into Xw (L × J),
eqs 3 and 4 can alternatively be written in the matrix form
(eq 5):

X ) Xm + Xb + Xw (5)

where Xm contains the offset; Xb contains the between-subject
variations, and Xw contains the within-subject variations.

On the basis of the usual constraints for the ANOVA model,16

it has been proven that the column spaces of the independent
submodels are orthogonal to each other.9,10,16,17 Consequen-
tially, the magnitudes of the different sources of variation can
be calculated, and estimated in sum of squares according to
eq 6:

|X|2 ) |Xm|
2 + |Xb|

2 + |Xw|
2 (6)

where |Xb|
2 and |Xw|

2 can be used to determine the percent-
ages of the between-subject variation and the within-subject
variation in the data.

Scaling. Since PCA and PLS-DA are scale-dependent meth-
ods, the use of an appropriate scaling technique is essential to
consider medium and small features in the spectral data as
important as the large features. Among the different scaling
techniques, Pareto-scaling and Unit Variance (UV) scaling are
the most frequently used ones to NMR data.28-31

An important disadvantage with UV-scaling has been con-
cerned with the increase of spectral noise, which may lead to
severe overfitting problems in PCA and PLS-DA. Pareto scaling
compromises between the extremes of no-scaling and UV-
scaling because the square root of the standard deviation is
used as the scaling factor. In PCA, this will lead to an improved
interpretability of the spectral loadings as it keeps the data
structure partially intact.28

Multivariate Data Analysis. Prior to the multivariate data
analysis, the between-subject data Xb is Pareto-scaled to
facilitate analysis of the major effects in the data.28 The Pareto-
scaling procedure for a particular NMR signal j with intensity
xblj in (between-subject) spectrum l is given in eq 7:

x̃blj )
xblj - xjbj

√sbj

(7)

where, x̃blj is the intensity of the Pareto-scaled NMR signal j;
jxbj is the mean signal intensity of signal j of xb, and sbj is the
standard deviation of signal j of xb. Concatenation of the
Pareto-scaled NMR signals x̃blj result in X̃b (L × J) and
represents the Pareto-scaled between-subject data.

Multilevel Principal Component Analysis (PCA)32 is then used
to explore the underlying systematic variations in X̃b. The
multilevel model for analyzing the data matrix X̃b is given in
eq 8,

Figure 1. Structure of the data set. K is the number of interven-
tions in the study for each subject. Each subject consist of a
paired data set (K ) 2) comprising the urinary NMR spectra of
the placebo group (K1) and the grape/wine treatment group (K2).
At the right-hand side, a typical urinary NMR spectrum is
presented after placebo intervention and consists out of J
variables (550 signal intensities along the NMR chemical shift
axis).
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X̃b ) TbPb
T + Eb (8)

where Tb(IK × Rb) contains the between-subject scores. Here
Rb is the number of principal components of the between-
subject PCA model. Pb

T(Rb × J) contains the between-subject
loadings, and Eb (L × J) contains the residuals of the between-
individual model.

Similar to multilevel PCA, multilevel PLS-DA can be used to
decompose the scaled within-subject data (X̃w). However, to
consider small peaks as important as the largest peaks in the
data, UV-scaling is applied instead of Pareto-scaling. The UV-
scaling procedure for a particular NMR signal j with intensity
xwlj in (within-subject) spectrum l is given in eq 9:

x̃wlj )
xwlj - xjwj

swj
(9)

where x̃wlj is the intensity of the UV-scaled NMR signal j; jxwj is
the mean signal intensity of signal j of xw, and swj is the
standard deviation of signal j of xw. Concatenation of the UV-
scaled NMR signals x̃wlj result in X̃w (L × J) and represents the
UV-scaled within-subject data.

In a multivariate regression method like PLS-DA,33 the
response variable y (class labels) is used to guide the projections
into meaningful directions, and provide information on the
relationship between X̃w and y according to eq 10:

y ) X̃wb + e (10)

where b (J × 1) is the regression coefficient vector, e (L × 1)
contains the y model residuals, and y (L × 1) contains the class
labels, which is equal for all subjects at intervention occasion
k. The y values of the subjects in the placebo group (k1) are
assigned to class -1, while the treatment group (k2) is assigned
to class +1. The PLS NIPALS algorithm33 is used to calculate
the regression coefficient vector b.

Cross Model Validation. Validation of PLS-based classifica-
tion models is essential as it has been identified that PLS (-DA)
in metabolomic applications are prone to serious modeling and
validation problems.4,34,35 Particularly in metabolomic data
where the number of subjects is usually much smaller than
the number of variables, the obtained classification models are
extremely susceptible to overfitting and chance classifica-
tions.34,36 To test the original and the multilevel PLS-DA model
against overfitting, the classification error of these models is
estimated according to a cross model validation (CMV).19,37,38

CMV is a resampling scheme in which the data set is
randomly split into a test set, a validation set and a training
set. The training set and the validation set are used to establish
the optimal model parameters (i.e., the number of PLS com-
ponents and variable selection), whereas the test set is used to
determine the true prediction error of the model. The test
samples are left out of the model optimization and are therefore
representative for the prediction of new, unseen subjects.

In the model optimization, repeated calibrations are made
with different training and validation sets using a single cross
validation (1CV) procedure.19,20,36 On the basis of the prediction
results of the validation set samples in the 1CV, the number of
PLS components as well as variable selection is optimized.
When a multilevel PLS-DA model is built from the training set,
the entire variation splitting procedure is performed. The CMV
should therefore be constrained to an adapted resampling
scheme, keeping the paired data structure in the training set,
the validation set and the test set intact for each individual. As
a result, complete individuals are left out of the training set.

Except for variation splitting, the CMV for the multilevel PLS-
DA model is similar to the CMV for the original PLS-DA model.

For class prediction of a new individual i (in the test set),
Xi

new (K × J) with placebo and treatment spectra, is first
corrected for the offset xm of the training set, according to eq
11:

Xci
new ) Xi

new - 1Kxm
T (11)

where Xci
new (K × J) contains the mean-centered data for a new

individual i; 1K (K × 1) contains ones, and xm
T (1 × J) contains

the mean values for each column in the training set X.
Then between-subject data (xbi

new)T (1 × J) for a new
individual i is calculated as the mean of Xci

new over the K
intervention occasions. The net variation around the mean is
described by the within-subject term Xwi

new (K × J) for new data.
Thus, the variation in the spectral data obtained from a new
individual i can be split according to eq 12:

Xi
new ) 1Kxm

T + 1K(xbi
new)T + Xwi

new (12)

Before class prediction, Xwi
new needs to be scaled according

to the mean (jxwj) and standard deviation (swj) of the training
set Xw. The scaling procedure for a NMR signal j in (within-
subject) spectrum l is given in eq 13:

x̃wlj
new )

xwlj
new - xjwj

swj
(13)

where x̃wlj
new is the UV-scaled NMR signal j with intensity xwlj

new

in a new (within-subject) spectrum l; jxwj is the mean signal
intensity of signal j in the training set, and swj is the standard
deviation of signal j in the training set.

Together with the estimated regression coefficient b (eq 10),
the class predictions (ŷnew) of new samples can be calculated
according to eq 14:

ŷnew ) X̃wi
newb (14)

Rank Product. To be able to select the most discriminative
spectral variables in the classification model, use was made of
the rank product.20,39 In a rank product (RP), all J variables in
the NMR spectrum (chemical shifts) are ranked according to
their PLS regression coefficients b. The largest absolute value
is assigned to rank 1, the second largest value to rank 2, and
so forth.

In the currently applied validation procedure, CMV was
repeated 20 times with a different selection of validation-,
training-, and test samples. As a result, also 20 regression
coefficient vectors (b) were obtained. The variables were ranked
according their absolute size in regression coefficient and
multiplied to obtain a final RP. Since the data set consist of
550 spectral variables, the average rank product for a given
variable is approximately (550/2)20 ) 6.1048. The spectral
variables with the lowest rank products are the ones with the
largest discriminative power.

Variable Selection. To select the most discriminative vari-
ables for a PLS-DA classification model, variable selection is
integrated in the 1CV procedure.19 In 5 sequentially performed
variable selection steps, respectively, 550, 275, 138, 69, and 35
spectral variables with the lowest ranks are selected for model
optimization. In each of these steps, a new RP is calculated,
from which only half of the variables is again used in the
consecutive variable selection step. On the basis of the 1CV
prediction results, obtained in the 5 variable selection steps,
the optimum number of variables as well as the optimum
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number of PLS components are determined. Finally, the
optimized model parameters are used to predict the class
membership of the independent samples in the test set.

Validation of the Treatment Effect. To evaluate the statisti-
cal significance of the treatment effect, a permutation test was
performed.20,36,40 In a permutation test, the class labels (y) are
randomly permuted, which implies that the order of the
placebo and treatment intervention for each subject will be
randomly assigned. The basic principle of the permutation test
is that randomization of the intervention class labels will lead
to poor classification models that should not be able to
distinguish between the placebo group and the treatment
group. Permutation of the class labels should in theory lead to
an average number of 29 misclassifications (NMC), which is
exactly 50% of data set. To verify this hypothetical prediction
error (as well as the distribution width), the CMV prediction
errors from 5000 different permutations were collected. De-
termination of the CMV prediction error in each permutation
is performed in exactly the same way as the original classifica-
tion model. Thus, each permutated data set is subjected to 20
CMV’s from which a mean CMV prediction error is estimated.
The distribution of CMV prediction errors obtained from the
5000 permutations is considered as the H0 distribution of no-
effect.

To test whether the observed treatment effect is indeed
statistically different from the H0 distribution of no-effect, use
is made of the p-value. The standard probability level of
significance (R ) 0.05) is used to rationalize a statistically
significant effect. If the original classification is not significantly
better than the permutations, the treatment is not considered
significant.

Comparison with the Ordinary PLS-DA Model. To establish
whether variation splitting in crossover designed studies indeed
improves the predictive ability19 of the classification model,
the CMV prediction error of the multilevel PLS-DA model is
compared with the ordinary PLS-DA model. To obtain the
prediction error of the ordinary PLS-DA model, a similar data
validation procedure is pursued as compared to the multilevel
PLS-DA model (including CMV with variable selection, per-
mutation testing and UV-scaling). The statistical significance
of the observed treatment effect is again determined by means
of the p-value.

Results and Discussion
1H NMR Spectra of Urine. In the urinary 1H NMR spectra

of the 29 human subjects, a wide range of low-molecular weight
metabolites can be identified which have previously been
described in literature.25,41,42 Some representative NMR spectra
from four different subjects after placebo and grape/wine
extract intervention are illustrated in Figure 2. In the pairwise
comparison of the NMR spectra, two types of variations can
be distinguished, that is, the biological variation (between the
subjects) and the variation induced by the nutritional treatment
(within the subjects). As shown in Figure 2a, biological varia-
tions are markedly revealed in the spectral region between δ
1.0 ppm and δ 2.5 ppm, and include resonances of various
endogenous metabolites. Among them, alanine (δ 1.48 ppm,
d, CH3), �-hydroxybutyric acid (δ 1.25 ppm, d, CH3), lactic acid
(δ 1.40 ppm, d, CH3), acetone (δ 2.22 ppm, s, CH3) and the
N-acetyl groups (δ 2.02-2.06 ppm, CH3) can be recognized.
Here, the metabolite profiles differ considerably between the
subjects, whereas the differences within the subjects are relative
small.

In Figure 2b, the chemical shift region between δ 7.5 ppm
and δ 7.7 ppm is highlighted and mainly includes two intense
triplets of hippuric acid (δ 7.55 ppm, t, CH3/CH5; δ 7.64 ppm,
t, CH4). Although hippuric acid is present in all urinary profiles,
distinctive variations were observed within the data-pairs. After
intervention of the grape extract, increased signal intensities
were observed in the urine samples of subject SA and subject
SB. In subject SC, the hippuric acid levels were not affected,
whereas subject SD exhibits an opposite treatment effect.

Analysis of Variation. According to eq 5, the variation in the
1H NMR data set (X) can be partitioned into an offset term
(Xm), a between-subject variation term (Xb) and a within subject
variation term (Xw). Analysis of the sums of squares of these
different subsets according to eq 6 shows that X is primarily
described by the offset term. As determined in the sum of

Figure 2. Creatinine normalized urinary 600 MHz 1H NMR spectra
(pH 3.0 ( 0.2), obtained from four subjects (SA, SB, SC and SD)
after placebo intervention (P) and grape extract intervention (G).
In panel a, the spectral region δ 1.0-2.5 ppm, the biological
variations between the data-pairs are illustrated. Among them,
the resonances of valine (val), alanine (ala), lactic acid (lac),
acetone (ace), N-acetyl groups (N-Ac), �-hydroxybutyric acid (�hb)
and glutamine/glutamate (glu) can be assigned. In panel b, the
region between δ 7.5 ppm and δ 7.7 ppm, a part of the intense
aromatic resonance pattern of hippuric acid is recognized. The
hippuric acid signals increases (v), decreases (V) or does not
change (o) within the subject pairs after grape/wine extract
intervention.
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squares (|Xm|
2), 75.1% of X is explained by Xm. From the

remaining 24.9%, 19.5% can be attributed to the between-
subject variation (|Xb|

2) and only 5.4% to the within-subject
variation (|Xw|

2). Thus, of the relevant variation between the
subjects only one-fifth is due to the treatment and four-fifths
is due to biological variation. As in the current data set, the
variation in Xb is much larger than in Xw, the use of variation
splitting is therefore all the more justified. In an ordinary PLS-
DA approach, these confounding variation sources typically
complicates the interpretation of the multivariate solution.9,10,16

Analysis of the between-Subject Variation. To examine
whether the between-subject variation contains discernible
underlying data structures, a four component PCA model was
fitted to Xb. The spectral variables in Xb were Pareto-scaled
prior to the PCA decomposition. This approach of scaling after
variation splitting is considered as an important benefit of the
multilevel approach, as the preferred scaling technique can
explicitly be adapted to the part of the data that is examined
and the data analysis technique used.

The resulting PCA model explains 71.9% of the total between-
subject variation. The scores on the first and the fourth
components are shown in Figure 3a and explain, respectively,
37.1% and 7.5% of the between-subject variation. In the score
plot, two subclasses can be distinguished along the first PC axis,
consisting of 6 and 23 subject-scores. Inspection of these
subclasses reveals that the NMR profiles originate from two
different NMR runs. The loadings of the first PC in Figure 3b

describe variations in a large number of signals which are
generally abundant in a urinary NMR spectrum. This suggests
that spectral differences between the NMR runs may be
explained by subtle variations in spectral line shapes, positional
shifts and data processing parameters (e.g., phase- and baseline
corrections), which are common sources of analytical noise in
many other analytical and spectroscopic applications.43,44

Besides analytical variation, also a gender-based effect could
be recognized in the between-subject score distribution. As
observed in Figure 3c, the scores that originate from the male
and female subjects tend to cluster in two groups. The second
PC and the fourth PC contribute to this gender-based difference
and explain, respectively, 19.0% and 7.5% of the between-
subject variation in the data. In Figure 3d, the fourth PC is
mainly described by high loadings of citric acid (δ 2.81 ppm,
d, 1/2CH2; δ 2.95 ppm, d, 1/2CH2) and glycine (δ 3.55 ppm, s,
CH2). These low-molecular weight metabolites have already
been identified in previously described studies as related to
gender differences in humans.45,46

Analysis of the within-Subject Model. The within-subject
data block (Xw) is particularly examined on systematic varia-
tions in the NMR metabolic profiles as a result of the grape/
wine extract consumption. A multilevel PLS-DA classification
model is used to discriminate between the treatment group
and the placebo group, in order to signify the intended
treatment effect. After variation splitting, the spectral variables

Figure 3. PCA between-individual scores of the first and the fourth PC. The differences in the score plots can mainly be explained by
(a) experimental variations and (c) biological variations (gender). The experimental variations are mainly described by the first PC and
(b) show in large extent the average urinary 1H NMR profile. The most abundant metabolites can be assigned to phenolic compounds
(Phe), glucose (Glx), glycine (Gly), citric acid (Cit), amino acids (AA), lactic acid (Lac) and hippuric acid (Hip). The gender-based differences
are largely described by the (d) fourth PC, in which the most abundant signals can be assigned to glycine and citric acid.
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in Xw were UV-scaled to make variations in the data set
independent of the signal strength.

By means of CMV the intervention class labels of the test
samples were predicted. To obtain stable class prediction
results and a stable RP, the average result of 20 CMVs was
calculated. As shown in Figure 4a, on average, 12.9 test samples
were predicted wrongly, which is about 22% of all prediction
results.

To validate whether the original classification model is
significantly better than the classification models from ran-
domly permuted data and not obtained by chance, a compara-
tive permutation test was performed. In this test, the class
predictions of permuted data were collected in 5000 permuta-
tions and represented as a H0-distribution of no effect. In case
that no difference exists between the intervention classes, an
average number of 29.0 misclassifications would be expected.
As shown in Figure 4a, the experimentally obtained H0-
distribution exactly matches this requirement. Since the per-
mutations suggest that the analysis method is not overfitting
the data, consequently the obtained CMV prediction error of
the original model () 12.9) is representative for the prediction
of new subjects. Comparing the CMV prediction error of the
original model against the permutations under the H0-distribu-
tion, result in a p-value which is much smaller than 0.0002. It
appears that none of the 5000 permutations resulted in a

prediction error lower than 12.9 misclassifications. On the basis
of the obtained p-value, the observed treatment effect was
considered as statistically significant (R ) 0.05).

Comparison with the Ordinary PLS-DA Model. To assess
the power of the multilevel PLS-DA model, the CMV prediction
error was compared with the prediction error obtained from
the ordinary PLS-DA model. Without variation splitting, this
ordinary PLS-DA classification model is derived from the
original data X. With the use of an identical CMV scheme and
scaling technique as has been performed in the validation of
the multilevel PLS-DA model, on average, 23.4 test samples
were misclassified. As shown in Figure 4b, the permutated data
again leads to an average number of 29.0 misclassifications.
On the basis of the p-value of 0.058, this classification result is
however not significant on the 5% significance level. The
permutation test showed that 291 out of 5000 permuted models
predict the class labels similarly or better than the original
model.

The CMV prediction error indicates that the observed
treatment effect in the ordinary PLS-DA is not significant. This
is different for the multilevel PLS-DA model which indeed
shows a significant treatment effect. This key observation
supports the idea that within-subject variations in crossover
designed metabolomic data should be analyzed by means of a
multilevel based method.

Identification and Validation of Biomarkers. To investigate
which 1H resonances are the most important variables in the
multilevel PLS-DA model, use was made of the rank product
(RP).20,39 In Figure 5a, the rank product for each NMR variable
(RP1/20) is shown and compared with a representative urinary
NMR spectrum for peak identification (Figure 5b,c). In each
of the 20 CMVs, only 45 out of 550 variables were consistently
selected in the model optimization (1CV). Among these vari-
ables, hippuric acid is the strongest NMR biomarker for the
intake of the grape/wine extract. As illustrated in Figure 5a,
hippuric acid is represented by 10 NMR spectral variables from
aliphatic and aromatic protons (δ 7.83 ppm, d, CH2/CH6; δ
7.64 ppm, t, CH4; δ 7.55 ppm, t, CH3/CH5; δ 4.13 ppm, d, CH2),
all of which are present within the lowest 10% quantile of the
RP. The presence of hippuric acid is in agreement with
previously reported studies where the metabolic impact of
polyphenolic-rich food consumption (tea) in humans was
studied.47,48 Hippuric acid, or N-benzoylglycine, is basically the
glycine conjugated form of benzoic acid, which is thought to
be the metabolic end-product of flavonoid degradation by the
gut microbiota. However, besides hippuric acid, also other
phenolic compounds were important in the classification
between the intervention groups, especially those who have
resonance frequencies between δ 6.8 ppm and δ 7.2 ppm. On
the basis of the chemical shift positions, the multiplicity of the
signals, the peak intensities of the resonances and the relative
abundance of the metabolites, at least two other phenolic
compounds could be assigned, that is, 4-hydroxyhippuric acid
and 4-hydroxyphenylacetic acid (Table 1). Like hippuric acid,
these phenolic acids are gut microbial fermentation products
of flavanoids.49-53

To our knowledge, this is the first time that NMR is able to
detect changes in these phenolic compounds in urine after
grape/wine extract consumption. This is remarkable since their
observed urinary levels (50-300 µM) are close to the lower
detection limits of NMR-based metabolic profiling. An impor-
tant aspect in the CMV procedure that allows the determination
of such minor metabolites in the RP is the use of UV-scaling.

Figure 4. Mean cross model validation (CMV) prediction error
(jxo), estimated in terms of number of misclassifications and
based on 20 CMV rounds. The results obtained from (a) the
multilevel PLS-DA model (jxo ) 12.9) and (b) the ordinary PLS-
DA model (jxo ) 23.4) are compared with the H0-distribution of
no effect (jxp). The H0-distribution of no-effect is based on the
CMV prediction error of 5000 permutations.
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Although this scaling technique is prone to overestimating
noise, a suitable signal-to-noise ratio can be obtained by using

the average result of 20 CMV rounds. The presence and identity
of these compounds was confirmed by additional GC-MS
experiments, by spectral comparison with commercially avail-
able reference standards, and by spiking experiments. Another
discriminating signal with a low rank product was observed at
δ 6.98 ppm (d). However, further identification of this unknown
aromatic signal (u1) was hampered by its low signal intensity
and the absence of other resonance patterns.

Also some endogenous metabolites contributed to the dif-
ferentiation between treatment and placebo groups, including
alanine54 (δ 1.48 ppm), formic acid (δ 8.66 ppm) and an
unknown metabolite (u2) at chemical shift position δ 3.21 ppm.
According to the RP analysis they were less discriminative than
the phenolic acid metabolites.

Conclusion

Taking advantage of the multilevel structure in a crossover
designed metabolomics study has shown major benefits in
comparison with the traditionally PLS-DA approach. Not only
the interpretability of the different variation sources in the data
was improved, but also the predictive strength of the classifica-
tion model has significantly increased. The between-subject
model showed that the major effects in the data can be
associated with analytical variations and gender differences.
The within-subject model contains the nutritional effect which
is only a minor fraction of the total variation. The multilevel
PLS-DA model showed that the observed treatment effect was
statistically significant as the p-value is much smaller than
0.0002. This is an enormous improvement compared to the
original PLS-DA model which did not show a significant
treatment effect (p ) 0.058). The combination of cross model
validation, permutation testing and rank products provided
several candidate biomarkers that can be associated with the
consumption of the grape/wine extract. Among these metabo-
lites, hippuric acid is the most important and well-identified
biomarker. This observation fits well in current understanding
of bioconversion of polyphenols in humans by the gut micro-
flora. In the rank product, also fermentation products could
be assigned that occur at levels close to the lower detection
range of NMR-based metabolic profiling, that is, 4-hydroxy-
hippuric acid, 4-hydroxyphenylacetic acid and formic acid.
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